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In many domains, committees bargain over a sequence of policies and a policy remains 
in effect until a new agreement is reached. In this paper, I argue that, in order to assess 
the consequences of veto power, it is important to take into account this dynamic aspect. 
I analyze an infinitely repeated divide-the-dollar game with an endogenous status quo 
policy. I show that full appropriation by the veto player is the only stable policy when 
legislators are sufficiently impatient; and that, irrespective of legislators’ patience and the 
initial division of resources, there is always an equilibrium where policy eventually gets 
arbitrarily close to full appropriation by the veto player. In this equilibrium, increasing 
legislators’ patience or decreasing the veto player’s proposal power makes convergence to 
this outcome slower and the veto player supports reforms that decrease his allocation. The 
main predictions of the theory find support in controlled laboratory experiments.
© 2021 The Author. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A large number of important voting bodies grant one or several of their members the right to block decisions even 
when a proposal has secured the necessary majority—a veto right. One prominent example is the United Nations Security 
Council (UNSC), where any of the five permanent members can prevent the adoption of a proposal with a negative vote. 
Another example is the U.S. President’s ability to veto congressional decisions or the European Parliament’s power to block 
legislation proposed by the European Commission. Additionally, in assemblies with asymmetric voting weights and complex 
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voting procedures, veto power may arise implicitly: this is the case of the U.S. in the International Monetary Fund and the 
World Bank governance bodies (Leech and Leech 2004).

The existence of veto power raises a frequent concern among practitioners and in the public opinion: although the 
formal veto right only grants the power to block undesirable decisions, it could de facto allow veto members to impose their 
ideal decision on the rest of the committee. This concern was expressed by the delegates of the smaller countries when 
the founders of the UN met in San Francisco in June 1945 (Russell 1958), and has been a crucial point of contention in the 
ongoing discussion over UNSC reform (Blum 2005). A similar debate has arisen regarding the IMF and WB voting weights 
(Woods 2000).

This paper investigates, theoretically and experimentally, the consequences of veto power in a dynamic bargaining setting 
where the location of the current status quo policy is determined by the policy implemented in the previous period. In each 
of an infinite number of periods, one of three legislators—one of whom is a veto player—is recognized to propose the 
allocation of a fixed endowment. The proposal is implemented if it receives at least two affirmative votes, including the 
vote of the veto player. Otherwise, the status quo policy prevails and the endowment is allocated as it was in the previous 
period. In this sense, the status quo policy evolves endogenously. In this setting, I answer three basic questions: To what 
extent is the veto player able to leverage his veto power into favorable outcomes, both in the short and in the long run? 
How does this depend on the legislators’ patience and the initial agreement? What are the effects of institutional measures 
meant to reduce the power of the veto player?

Formal models have mostly investigated veto power from the static perspective of an ad hoc committee bargaining over 
a single policy: committee members come to the table with an exogenous status quo policy and negotiations end when 
they reach an agreement for a reform. This is not a realistic description of many bargaining environments. Committees are 
often dynamic: their members bargain over a sequence of policies—that is, the committee is standing—and a policy remains 
in effect until a new agreement is reached—that is, the status quo is endogenous. These are key features of European 
legislation on environmental standards or competition policy. Similarly, Supreme Court opinions remain in force unless 
revisited and some UNSC resolutions—for example, on disputed borders or economic sanctions—and IMF decisions—for 
example, on its basket of global reserve currencies—hold until explicitly addressed by a new vote. In this dynamic setting, 
the status quo policy—which determines the bargaining advantage of veto players—is the product of past decisions rather 
than being exogenous. This suggests that, in order to assess veto members’ incentive to uphold the status quo and the 
balance of power between veto and non-veto members in a committee, it is important to take into account the inherently 
dynamic process by which the status quo policy is generated. This is exactly what I do in this paper.

In particular, I fully characterize a Markov Perfect Equilibrium (MPE) and prove it exists for any discount factor and any 
initial divisions of the resources.1 In this MPE, the veto player is able to gradually converge to his ideal policy, irrespective 
of the legislators’ patience and the initial division of resources. At the same time, it takes an infinite number of periods to 
converge to this long run outcome. This happens because the bargaining power of a patient non-veto player decreases with 
the share held by the veto player in the status quo. For this reason, the veto player’s coalition partner demands a premium
to vote in favor of an allocation that increases the veto player’s share: the veto player has to compensate his coalition 
partner with a short term gain in stage utility for the long term loss in future bargaining power. This premium is always 
positive and, thus, some benefits accrue to non-veto players in all periods of the game. The speed of convergence to the 
veto player’s ideal outcome is decreasing in the discount factor of the committee, as the premium demanded by non-veto 
legislators increases in their patience. Interestingly, when the status quo policy prescribes dispersed benefits, the veto player 
supports reforms that decrease his allocation, moving the status quo policy further away from his ideal policy. In particular, 
he is willing to move to an allocation where both he and one non-veto player have a smaller share. This occurs because 
the future status quo policy affects the future leverage the veto player has when he is the proposer: in this event, he needs 
to secure the vote of just one non-veto player, and he will, thus, build a coalition with the non-veto player who demands 
the least. While many divisions of resources can be sustained in equilibrium when players are sufficiently patient, these 
results are not a feature of the particular equilibrium I characterize. In fact, I show that complete appropriation by the veto 
player is the only absorbing outcome in any subgame perfect Nash equilbrium when players are sufficiently impatient; and 
that, irrespective of legislators’ patience, this extreme division of resources is the only absorbing outcome in any continuous
and consistent MPE — that is, in any MPE whose associated strategies are continuous and do not lead to choice behavior 
inconsistent with standard criteria in decision theory (e.g., the Weak Axiom of Revealed Preferences).

This dynamic model suggests that giving a committee member the power to oppose does not deprive completely other 
members of their bargaining power in the short run but it guarantees a strong leverage on long run outcomes. Therefore, 
I analyze an institutional mechanism to weaken veto power and promote more equitable outcomes for longer: reducing 
the agenda setting power of the veto player. I show that, as long as the veto player maintains some proposal power, 
this measure does not prevent complete expropriation of non-veto players in the long run. At the same time, assigning 
monopolistic agenda setting powers to non-veto players is effective in preventing their complete expropriation, as the veto 

1 The only general existence results for dynamic bargaining games apply to settings with stochastic shocks to preferences and the status quo (Duggan 
and Kalandrakis 2012) or a non-collegial voting rule, i.e., no veto power (Anesi and Duggan 2018). As these features are not present in my model, proving 
existence is a necessary step of the analysis. Moreover, if I were to consider a model with stochastic shocks to preferences and the status quo, the results 
in Duggan and Kalandrakis (2012) would guarantee existence of an equilibrium but would not provide a characterization of its outcomes and dynamics, or 
comparative statics with respect to patience, the initial division of the dollar or recognition probabilities.
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player cannot improve on his initial allocation. I characterize an MPE to ensure existence and then show that these outcomes 
are shared by any continuous and consistent MPE of the game.

It would be challenging to evaluate the ability of this complex theoretical model to predict empirical behavior using 
observational data. Instead, I test the predictions from the theoretical analysis with laboratory experiments, which allow a 
tight control of the decision environment and the evolution of the status quo policy. I consider an experimental design that 
varies legislators’ long run incentives, comparing legislatures with different degrees of patience. The theory is consistent 
with many features of the data: the vast majority of policies give a positive amount only to a minimal winning coalition 
(i.e., the veto player and one non-veto player); the allocation to the veto player gradually increases over time, more rapidly 
in less patient committees; allocations which give most resources to the veto player are the only stable policies; both veto 
and non-veto proposers expropriate resources from one non-veto player and share the spoils with a coalition partner; veto 
proposers share resources with the coalition partner more evenly in more patient committees; voting behavior is selfish, 
with both veto and non-veto legislators more likely to support proposals which are more generous to themselves and less 
likely to support proposals which are more generous to the other non-proposer.

2. Related literature

This paper contributes primarily to the theoretical literature on the consequences of veto power.2 In particular, Winter 
(1996) shows that the share of resources to veto players is decreasing in the cost of delaying an agreement, so that the 
share of resources to non-veto players declines to zero as the cost of delay becomes negligible, that is, as legislators become 
infinitely patient. A common limitation of this literature, and the main point of departure with my paper, is the focus on 
static settings: the legislative interaction ceases once the legislature has reached a decision, and policy cannot be modi-
fied after its initial introduction. In this paper, the legislature makes multiple decisions and the status quo policy is not 
exogenously specified but is rather the product of policy makers’ past decisions.

In this sense, this study belongs to a recent literature on legislative policy making with an endogenous status quo and 
farsighted legislators (Baron 1996, Kalandrakis 2004, 2010, Penn 2009, Diermeier and Fong 2011, Bowen and Zahran 2012, 
Richter 2014, Dziuda and Loeper 2016). Four papers in this literature explore the consequences of veto power: Duggan et al. 
(2008), Anesi and Seidmann (2015), Anesi and Duggan (2017) and Diermeier et al. (2017). I discuss each of them in detail 
below.

Duggan et al. (2008) model the specific institutional details of the American presidential veto and limit their analysis to 
numerical computations. Anesi and Seidmann (2015) consider unanimous voting, that is, committees where all legislators 
have the power to oppose. They show that the unique stationary MPE payoffs coincide with the unique stationary SPE 
payoffs in the equivalent model with ad hoc committees (i.e., à la Baron and Ferejohn 1989). Anesi and Duggan (2017)
consider the finite framework introduced by Anesi (2010), where the set of feasible policies is finite, legislators have strict 
preferences and are sufficiently patient. They show that, if there is a veto player with positive recognition probability, then 
starting from any given alternative, there is a unique absorbing point which the equilibrium process transitions to. While 
they do not characterize this point and their framework is not nested with mine, the equilibrium outcomes I characterize 
are consistent with their result: there is a unique absorbing outcome, the veto player’s ideal policy, which is independent 
of the initial alternative.3

Diermeier et al. (2017, DES) consider a model where legislators allocate a set of indivisible, identical objects among 
themselves and are sufficiently patient.4 A key element of their analysis is the notion of a protocol, which might be any 
finite sequence of players (possibly with repetition) ending with a veto player. The protocol to be used is realized at the 
beginning of each period and prescribes the sequence of proposers within that period. A bargaining period ends as soon 
as a proposal is accepted or after the last player in the protocol had his proposal rejected. DES focus on protocol-free MPEs, 
that is, MPEs where the function which maps the status quo allocation and the realization of the bargaining protocol into 
the current period’s allocation does not depend on the bargaining protocols. They show that, in any protocol-free MPE, the 
set of stable allocations coincides with the unique von Neumann-Morgenstern-stable set.5 In committees with three players, 
one veto player and simple majority (as in this paper), this set is composed of all allocations which give the same amount 
to the two non-veto players. I show that, when the objects legislators bargain over are infinitely divisible, mutual protection 
by non-veto players is not assured and the veto player might be able to fully expropriate non-veto players regardless of their 

2 A large number of studies build on models of legislative bargaining à la Baron and Ferejohn (1989) to examine the role of veto power in specific 
environments, e.g., the case of the U.S. Presidential veto. See, among, others, Romer and Rosenthal 1978, Matthews 1989, Diermeier and Myerson 1999, 
McCarty 2000, Groseclose and McCarty 2001, Callander and Krehbiel 2014, Dragu et al. 2014). Less related to the non-cooperative approach of this paper, 
Lucas (1992) and Ray and Vohra (2015) discuss cooperative solutions for bargaining games with veto players.

3 Diermeier and Fong (2011) study the finite framework with a persistent agenda setter. This is related to a special case of the model with heterogeneous 
proposal power I investigate in Section 5. They find that legislators without agenda setting power mutually protect each other and the persistent agenda 
setter is unable to fully expropriate them. See the Appendix for an MPE where full expropriation by a persistent agenda setter is the only stable allocation 
even when, as in Diermeier and Fong (2011), the set of feasible policies is finite and the legislators’ discount factor approaches 1.

4 Specifically, they assume δ > 1 − 1
b+2 , where b is the number of available indivisible objects.

5 In the Appendix, I show that, dropping the requirement of protocol independence and using the protocols commonly assumed in the legislative bar-
gaining literature (and in this paper), can lead to MPEs where full expropriation by the veto player is the only stable allocation even when, as in DES, the 
set of feasible policies is finite and the legislators’ discount factor approaches 1.
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patience and the initial division of the dollar. Moreover, in contrast with DES, I characterize both stable outcomes and the 
transition to these policies for any level of patience, and I offer results on the effect of legislators’ patience and recognition 
probabilities on bargaining outcomes.

Finally, this paper contributes to the literature on laboratory experiments testing models of legislative bargaining (McK-
elvey 1991, Frechette et al. 2003, Frechette et al. 2005a,b,c, Diermeier and Morton 2005, Diermeier and Gailmard 2006, 
Frechette 2009, Drouvelis et al. 2010, Miller and Vanberg 2013, 2015, Agranov and Tergiman 2014, Baranski and Kagel 
2013, Tergiman 2015, Nunnari and Zapal 2016, Cook and Woon 2020, Fréchette and Vespa 2017). In particular, Wilson and 
Herzberg (1987), Haney et al. (1992), Kagel et al. (2010), and Agranov and Tergiman (2019) provide experimental evidence 
on the consequences of veto power in ad hoc committees. All this work focuses on static environments where resources 
are allocated only once.6 More closely related to this paper, the experiments presented in Battaglini and Palfrey (2012), 
Battaglini et al. (2012), Agranov et al. (2016), Baron et al. (2017), Agranov et al. (2020), and Battaglini et al. (forthcoming)
investigate models of legislative bargaining with standing committees, where resources are allocated repeatedly. As in the 
current paper, in Battaglini and Palfrey (2012) and Baron et al. (2017), the status quo policy evolves endogenously: if an 
agreement is not reached, resources are allocated as in the previous period.7 None of these papers considers the effect of 
veto power.8

3. Model and equilibrium notion

Three agents repeatedly bargain over a legislative outcome xt for each period of an infinite horizon, t = 1, 2, . . . . One of 
the three agents is endowed with the power to veto any proposed outcome in every period. I denote the veto player with 
the subscript v and the two non-veto players with the subscript j = {1, 2}. The possible outcomes in each period are all 
possible divisions of a fixed resource among the three players.

The bargaining protocol At the beginning of each period, one agent is randomly selected to propose a new policy, z ∈ �. 
Each agent has the same probability of being recognized as policy proposer, that is 1

3 . This proposal is voted up or down 
by the committee. A proposal passes if it gets the support of the veto player and at least one other committee member. If 
a proposal passes, xt = z is the implemented policy at t . If a proposal is rejected, the policy implemented is the same as it 
was in the previous period, xt = xt−1. Thus, the previous period’s decision, xt−1, serves as the status quo policy in period t . 
The initial status quo x0 is exogenously specified.

Stage utilities Agent i derives stage utility ui = xi from the implemented policy xt . Players discount the future with a 
common factor δ ∈ [0, 1), and their payoff in the game is given by the discounted sum of stage payoffs.

Strategies and equilibrium notion In what follows, I look for a stationary Markov perfect equilibrium (MPE). In this type of 
equilibrium, strategies depend only on payoff-relevant effects of past behavior (Maskin and Tirole 2001). I define the state 
in period t as the status quo policy, or the previous period’s decision, st = xt−1. In an MPE, agents behave identically in 
different periods with the same state s, even if that state arises from different histories. In this dynamic game, the expected 
utility of agent i from the allocation implemented in period t does not only depend on his stage utility, but also on the 
discounted expected flow of future stage utilities, given a set of strategies. The continuation value, vi(s), is the expected 
payoff of legislator i when the state is s before the proposer is selected. We can write the expected utility of legislator i
from the allocation implemented in period t , xt , as:

Ui(xt) = xt
i + δvi(xt)

As is standard in models of bargaining, I require that agents use stage-undominated voting strategies—that is, they vote 
yes if and only if their expected utility from the status quo is not greater than their expected utility from the proposal.9

4. Equilibrium analysis

In this Section, I propose natural conditions on strategies, and show that these conditions define an equilibrium. First, 
equilibrium proposals involve minimal winning coalitions, such that at most one non-veto player receives a positive amount 

6 Less related to the private value environment of this paper, Guarnaschelli et al. (2000), Goeree and Yariv (2011), Bouton et al. (2017), and Elbittar et al. 
(forthcoming) study the consequences of veto power for the aggregation of information in common value environments.

7 In Battaglini et al. (2012), Agranov et al. (2016), Agranov et al. (2020), and Battaglini et al. (forthcoming) the status quo policy is exogenous and time-
invariant. The linkage between periods is represented by the stock of a durable public good the committee can invest in (Battaglini et al. 2012, Agranov et 
al. 2016), the allocation of proposal power (Agranov et al. 2020), or the available budget (Battaglini et al. forthcoming).

8 The sole exception is Battaglini et al. (2012) who consider a treatment with unanimous voting. Contrary to the divide-the-dollar game with endogenous 
status quo studied in this paper, in Battaglini et al. (2012), resources can be allocated both to private transfers and to investment in a durable public good; 
and the status quo policy does not depend on past decisions but is always zero investment in the public good and an even share of the budget to each 
committee member’s private consumption.

9 This restriction rules out uninteresting equilibria where voting decisions constitute best responses solely due to the fact that a single vote cannot 
change the outcome.
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Fig. 1. Veto’s acceptance set and non-veto’s proposal strategies for state s0: (a) Av (s0) when δ = δ1 > 0; (b) Av (s0) δ = δ2 > δ1, (c) equilibrium proposal of 
non-veto 1 (shorter arrow departing from s0) and non-veto 2 (longer arrow departing from s0). (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

in each period. Second, the proposer proposes the acceptable allocation—that is, an allocation that defeats the status quo—
that maximizes his current share of the dollar. The set of allocations each agent prefers to the status quo policy changes 
with the discount factor, as legislators take more or less into account the impact of the current allocation on future periods. 
Not surprisingly, this has important consequences for the dynamics of the game.

I first discuss the case when the proposer is a non-veto player, and then the case when the proposer is a veto player. To 
help with the exposition, I partition the space of possible divisions of the dollar into two subsets, � and �\�. Define �
⊂ � as the set of states x ∈ � in which at least one non-veto legislator gets zero. Define the demand of legislator i, di , as 
the minimum amount he requires to accept a proposal x ∈ �.

4.1. Non-veto proposer

When a non-veto player is proposing, he needs to secure the vote of the veto player in order to change the current status 
quo. If the non-veto proposer wants to maximize his current share of the dollar, he will propose the veto player’s demand 
to the veto player, and assign the remainder to himself. Therefore, to characterize the equilibrium proposal strategies of a 
non-veto player, we need to identify the acceptance set of the veto player.

A perfectly impatient veto player values only his current allocation and, thus, only supports proposals that give him 
as much as the status quo or more. On the other hand, a patient veto player is not indifferent between all states in 
which he receives the same allocation, and might be better off with allocations that reduce his current share when these 
decrease his future coalition building costs. In particular, he is willing to move from an interior allocation where he gets 
a higher share to an allocation where both he and one non-veto player have a smaller share. This occurs because the 
future status quo policy affects the future leverage the veto player has when he is the proposer. In this event, he needs 
to secure the vote of just one non-veto player, and he will, thus, build a coalition with the non-veto player who demands 
the least. As shown below, the demand of each non-veto player is an increasing function of what he gets in the status 
quo and, therefore, a veto player’s coalition building costs with status quo s are a positive function of min{s1, s2}. Thus, a 
veto player prefers an allocation s′ where he gets s′

v and min{s′
1, s

′
2} = s′

nv to an alternative allocation s′′ with s′′
v = s′

v but 
min{s′′

1, s′′
2} = s′′

nv > s′
nv .

Fig. 1 depicts the acceptance set of a patient veto player for two different values of δ > 0. The vertical dimension 
represents the share to (non-veto) player 1, while the horizontal dimension represents the share to (non-veto) player 2. The 
remainder is the share that goes to the veto player. In the Appendix, I characterize the amount the veto player demands to 
accept a proposal that brings the status quo into �—where one non-veto player gets nothing—as:

dv = max{sv − δ
3−2δ

snv ,0} (1)

where snv is the allocation of the poorer non-veto player in the status quo. The reduction accepted by the veto player 
increases with his discount factor δ and the share to the poorer non-veto player snv . A veto player does not accept any 
division of the dollar that gives him less than the status quo when s ∈ �. Note also that the reduction a veto player is 
willing to accept could be more than what he has in the status quo, in which case his demand is bounded below by 0.

The non-veto proposer proposes the acceptable policy that maximizes his current allocation. These are depicted in the 
right-most panel of Fig. 2. A non-veto proposer completely expropriates the other non-veto player, gives the veto player his 
demand, and allocates the remainder to himself. When the state is in �, the non-veto proposer can only get 1 − sv , but 
when the state is in �\� he can extract an higher amount, namely 1 − dv .
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Fig. 2. Non-veto 2’s acceptance sets for state s0 where s1 > s2: (a) A2(s0) when δ = 0, (b) A2(s0) when δ = δ1 > 0; (c) A2(s0) δ = δ2 > δ1.

4.2. Veto proposer

When the veto player desires to pass a proposal with a minimal winning coalition, he is not bound to include any 
specific legislator. Thus, he selects the legislator who accepts the highest increase to the veto player’s share—that is, the 
legislator with the lowest demand—as his coalition partner. When legislators are perfectly impatient, the veto player builds 
a coalition with the poorer non-veto player—the non-veto player who receives the least in the status quo—giving him as 
much as he is granted by the status quo. A perfectly impatient non-veto player accepts this proposal. A patient non-veto 
player does not.

In fact, the bargaining power of a patient non-veto player decreases with the share held by the veto player in the status 
quo. For this reason, a patient non-veto player prefers an allocation s′ ∈ � where he gets s′

j = 0 and the veto player gets 
s′

v to an alternative allocation s′′ ∈ � with s′′
j = s′

j but s′′
v > s′

v . The difference between these allocations arises when he is 
recognized in t + 1, as he will gain the support of the veto player only for proposals that give him no more than 1 − sv . 
Fig. 3 depicts the acceptance set of the poorer non-veto player for a state s0 ∈ � and three increasing values of the discount 
factor.

With δ > 0, the veto player’s coalition partner demands a premium to vote in favor of an allocation that increases the 
veto player’s share: the veto player has to compensate his coalition partner with a short term gain in stage utility for the 
long term loss in future bargaining power. The Appendix shows that the demand of the poorer non-veto player for states 
s ∈ � is:

dnv = δ
3−2δ

snv (2)

where snv is the allocation to the richer non-veto player in the status quo.
Some properties of dnv are worth noting. First, dnv is smaller than snv for any δ ∈ [0, 1). This means that, as long as 

δ < 1, the veto proposer can increase his share, as he can assign himself 1 − dnv > sv = 1 − snv . Since the veto player does 
not accept any reduction to his allocation once s ∈ �, the allocation to the veto player displays a ratchet effect: it can only 
stay constant or increase.

Second, the premium paid by the veto player to his coalition partner is monotonically increasing in δ and linearly 
increasing in snv : dnv converges to snv as δ converges to 1, and to 0 as δ converges to 0. This implies that the ratchet effect 
is slower with more patient legislators. With δ = 0, the premium is 0 and the veto player is able to steer the status quo 
policy to his ideal point in at most two proposals, as he can pass any x ∈ � when the poorer non-veto player has zero. 
With δ ∈ (0, 1), the premium is always positive and convergence to the veto player’s ideal point happens only asymptotically. 
Fig. 4(b) shows how the state would evolve when the veto player always proposes.

When the allocations to the two non-veto players are close, the veto player mixes between coalition partners. This is 
necessary to guarantee that the proposer’s choice of a partner is a best response to what they demand: if the veto player 
always picked the poorer non-veto player as coalition partner, this player would become the most expensive coalition 
partner.

4.3. Theoretical results

Proposition 1 provides a summary of the discussion above:

Proposition 1. For any δ ∈ [0, 1) and any s0 ∈ � there exists an MPE such that:

• All proposals give a positive allocation at most to a minimal winning coalition.
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Fig. 3. Veto’s equilibrium proposal strategy for state s0 and δ > 0.

Fig. 4. Partition of � into regions with different equilibrium strategies for allocations where s1 ≥ s2: (a) δ = 0; (b) δ = δ1 > 0; (c) δ = δ2 > δ1. In A and B, 
veto proposer builds a coalition with poorer non-veto player; in C and D, veto proposer mixes between coalition partners; in B, and C veto player is willing 
to accept nothing when he is not proposing.

• For some s ∈ �\�, the veto proposer mixes between possible coalition partners. For the remaining s ∈ �, the veto proposer 
proposes dnv to the poorer non-veto player.

• For all s ∈ �, the non-veto proposers propose dv to the veto player.
• For all s ∈ �, dv = sv and dnv ≥ snv , that is, the veto player demands his status quo allocation, non-veto players demand weakly 

more.

In the Appendix, I give the exact statement of the equilibrium proposal and voting strategies for each region of �, and 
show that these strategies and the associated value functions constitute part of an MPE. Moreover, I show that the MPE 
from Proposition 1 is continuous in δ and s, meaning that a small change in the discount factor or a small change in the 
status quo implies a small change in proposal strategies and, by extension, to the equilibrium transition probabilities. An 
immediate implication of the continuity of transition probabilities is the fact that continuation values and expected utilities 
are continuous.

Proposition 2. The continuation value functions, V i , and the expected utility functions, Ui , induced by the equilibrium in Proposition 1
are continuous.

Proposition 3 discusses the long run implications of the equilibrium from Proposition 1:
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Proposition 3. For any δ ∈ [0, 1) and any s0 ∈ �, there exists an MPE such that the status quo policy eventually gets arbitrarily close 
to the veto player’s ideal policy, that is, ∀ ε > 0 limt→∞ Pr[xt

v > 1 − ε] = 1.

Proposition 4 addresses the speed of convergence to this long run outcome:

Proposition 4. In the MPE characterized in the proof of Proposition 1, if legislators are impatient, δ = 0, it takes at most two rounds 
of proposals by the veto player to converge to his ideal policy. If legislators are patient, δ ∈ (0, 1), convergence to this state does not 
happen in a finite number of periods, and the higher the discount factor the slower the convergence.

5. Heterogeneous recognition probabilities

In some settings, the veto player is an outsider with reduced ability to set the agenda—for example, the U.S. President—
while in others the veto player has a privileged position to set the agenda—for example, committee chairs in the U.S. 
Congress. In this Section, I relax the assumption of symmetric recognition probabilities and explore an institutional measure 
that could, in principle, reduce the leverage of the veto player and promote more equitable outcomes: manipulating the 
recognition probability of the veto player. In particular, I characterize sufficient conditions on the discount factor and the 
recognition probabilities under which the veto player is able to eventually appropriate all resources for any initial status quo. 
In these cases, the speed of convergence to this outcome is increasing in the probability the veto player sets the agenda and 
decreasing in the legislators’ patience.

Denote by pv the probability the veto player is recognized as the proposer in each period, with pnv = 1−pv
2 being the 

probability a non-veto player is recognized. Proposition 5 shows that, when pv ∈ (0, 1/2] or pv = 1, there exists an MPE 
of this dynamic game that has the same features as the one characterized in Proposition 1: all proposals entail positive 
distribution to, at most, a minimal winning coalition and the status quo allocation converges to the ideal point of the veto 
player irrespective of the discount factor and the initial allocation of resources. When pv ∈ (0.5, 1), an MPE with these 
features exists as long as the discount factor is below a threshold, δ(pv ).

Proposition 5. Consider the game with heterogenous recognition probabilities. If pv ∈ (
0, 1

2

] ∪ {1}, then for any δ ∈ [0, 1) and any 
s0 ∈ �, there exists an MPE such that the status quo policy eventually gets arbitrarily close to the veto player’s ideal point. If pv ∈ ( 1

2 ,1
)
, 

then for any δ ≤ δ(pv ) and any s0 ∈ �, there exists an MPE such that the status quo policy eventually gets arbitrarily close to the veto 
player’s ideal point.10

As in the case with even recognition probabilities, this result hinges on the fact that the veto player is able to move 
the status quo to �—the set of allocations where at least one non-veto player gets zero—as soon as he proposes and that, 
once an allocation is in this absorbing set, the veto player is able to increase his share whenever he proposes. When the 
sufficient conditions in Proposition 5 are met, the veto player’s proposal power influences the speed of convergence to this 
policy both directly and indirectly. The direct effect is given by the change in the frequency at which the veto player can 
increase his allocation—which happens only when he proposes. The indirect effect is given by the change in the amount 
the veto player can extract from the non-veto players when he proposes. The probability of recognition of the veto player 
affects the continuation value of the status quo policy for all legislators, and, thus, it affects how much they demand to 
support a policy change.

Consider status quo allocations where one non-veto player has nothing. As pv increases, the poorer non-veto player 
is less likely to be recognized and, thus, he is less concerned about the endowment of the richer non-veto player, which 
represents the resources he can appropriate when he has the power to set the agenda. This reduces the premium he 
demands to support an allocation that increases the share to the veto player. In the proof of Proposition 5, I show that this 
premium is monotonically decreasing in pv . When pv = 1, the poorer non-veto player does not demand a premium and 
supports any allocation. Thus, with a higher pv , the veto player is more likely to increase his share in each period, and he 
can also extract more from the non-veto players when he is the proposer.

The limit case where the veto player does not have any chance to set the agenda is effective in avoiding full expropriation 
of non-veto players and, thus, merits discussion. Consider the dynamic bargaining game with pv = 0. In the MPE I fully 
characterize in the proof of Proposition 5, each non-veto proposer offers to the veto player his status quo allocation and 
takes the remainder for himself. As a consequence, the veto player receives the amount prescribed by the initial agreement 
in every period of the game and he is never able to increase his allocation. Proposition 6 summarizes this discussion:

Proposition 6. In the MPE from Proposition 5, (a) if δ = 0 or pv = 1, it takes at most two rounds of proposals by the veto player to 
converge to his ideal policy; (b) if δ ∈ (0, 1) and pv ∈ (0, 1), convergence to this state does not happen in a finite number of periods 

10 The threshold δ(pv ) is characterized in the proof of Proposition 5. This MPE does not exist only for a small fraction of parameters: the lowest value of 
δ is 0.875, reached when pv ≈ 0.857. Thus, for δ ∈ [0, 0.875), the MPE exists for any pv ∈ (0, 1] and any s0 ∈ �. For a discussion of the intuition behind 
the irregular shape of the existence set, see the proof of Proposition 5.
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and convergence is slower the higher is δ and the lower is pv ; (c) if pv = 0, the veto player receivers the amount prescribed in the 
initial status quo s0

v , in all periods.

In spite of these discontinuities in long run outcomes and in the speed of convergence, the MPE from Proposition 5
is continuous in δ, s and pv , meaning that, in the set of parameters for which the equilibrium exists, a small change in 
the discount factor, the status quo or recognition probabilities implies a small change in legislators’ value functions and 
expected utilities.

Proposition 7. The continuation value functions, V i , and the expected utility functions, Ui, induced by the equilibrium in Proposition 5
are continuous.

6. Uniqueness of equilibrium outcomes

The legislative game studied in this paper is an infinite horizon dynamic game with a plethora of subgame perfect Nash 
equilibria and, thus, an equilibrium-selection issue. As standard in the literature on dynamic legislative bargaining, I do not 
consider equilibria involving stage-dominated or non-stationary strategies.11 Even so, it is still possible that other MPEs of 
this game exist. For example, Anesi and Duggan (2018) show that, in a large class of models of dynamic bargaining with 
an endogenous quo, MPEs are indeterminate. While their result does not apply to the framework of this paper (because the 
voting rule is collegial), it highlights the fact that constructive techniques may fail to identify other plausible outcomes. In 
the Appendix, I consider the game with homogeneous recognition probabilities and characterize a class of MPEs where an 
allocation (or a pair of allocations) giving a positive amount to all players is stable. The set of such allocations is non-empty 
for any δ > 0.68 and grows with δ. As δ goes to 1, there exists an MPE where Y = {(xv , x1, x2), (xv , x2, x1} is an irreducible 
absorbing set for any x ∈ � such that min{xv , x1, x2} > 0 and x1 + x2 > 0.25.12 In this Section, I show that the results 
presented in Sections 4 and 5 are not a feature of a particular equilibrium but hold in larger classes of equilibria. Before I 
state the formal results, I need to introduce some additional definitions:

Definition 1 (Continuous MPE). We say that an MPE is continuous if the continuation value functions induced by equilibrium 
strategies, V i(s), are continuous at any policy s ∈ � for any i = {v, 1, 2}.

Definition 2 (Consistent MPE). Fix an MPE. Let A(s) be the set of proposals which beat status quo s and let xa(s) be the 
equilibrium proposal of a ∈ {1, 2} given status quo s. We say that a proposal strategy is consistent if, for any pair of status 
quo policies s and s′ and any proposer a ∈ {1, 2}, xa(s) ∈ A(s′) and xa(s) 
= xa(s′) implies xa(s′) /∈ A(s). A consistent MPE is 
an MPE in consistent proposal strategies.

Definition 3 (Irreducible absorbing set). Fix an MPE. The set Y ⊆ � is an absorbing set if once the committee implements 
policy y ∈ Y , it never transitions to policy x /∈ Y with positive probability. The set Y is an irreducible absorbing set if Y is 
an absorbing set and there does not exist a proper subset Y ′ ⊂ Y such that Y ′ is an absorbing set.

Continuity requires that a small change in the status quo implies a small change in proposal strategies, value functions 
and expected utilities. Consistency is adapted from Forand (2014) and requires that proposal strategies not lead to choice 
behavior that is inconsistent with standard criteria in decision theory (e.g., the Weak Axiom of Revealed Preferences): 
consider the policy chosen under status quo s, xa(s); if the same policy is still available under a new status quo s′ but it is 
not chosen, that is, xa(s) ∈ A(s′) and xa(x) 
= xa(x′), then, it must be the case that the policy chosen under this new status 
quo was not available under the old status quo, that is, xa(s′) /∈ A(s).13

Proposition 8 considers the broader class of subgame perfect Nash equilibria (a superset of MPEs) and shows that no 
allocation other than full appropriation by the veto player can be stable when the discount factor is sufficiently low.

Proposition 8. In any subgame perfect Nash equilibrium of the dynamic legislative bargaining game with heterogeneous recognition 
probabilities, (a) full appropriation by the veto player is absorbing for any δ ∈ [0, 1); (b) V v(x) ≥ xv

1−δ
; (c) V i(x) ≥ pnv xi

1−δpnv
for i =

{1, 2}; and (d) no allocation other than full appropriation by the veto player is absorbing for any δ ∈
[

0, 1
2−pnv

)
.

11 In large legislatures, non-stationary strategies that depend on the history are implausible because of legislators’ turnout, extraordinary commitment, 
coordination, and/or communications requirements.
12 Moreover, in subsequent work, Sethi and Verriest (2019) show that, when agents are sufficiently patient, the veto player holds sufficient proposal 

power, and the initial allocations to non-veto players are sufficiently similar, there exists an MPE where the veto player is only able to partially expropriate 
non-veto players.
13 These conditions have already been used to refine equilibria of dynamic games of elections and bargaining (see, e.g., Battaglini and Coate 2007, 2008, 

Diermeier and Fong 2011, Battaglini et al. 2012, Forand 2014).
194



S. Nunnari Games and Economic Behavior 126 (2021) 186–230
Corollary 1. Consider the dynamic legislative bargaining game with equal recognition probabilities. If δ < 3/5, there is no subgame 
perfect Nash equilibrium where an allocation other than full appropriation by the veto player is absorbing.

Proposition 9 considers the class of stationary Markov perfect equilibria. It shows that, in any irreducible absorbing set 
which includes more than one policy, the veto player must receive the same allocation in all these policies.14

Proposition 9. Consider any MPE of the dynamic legislative bargaining game with pv ∈ [0, 1]. For any set Y ⊆ �, Y is an irreducible 
absorbing set with respect to this MPE only if all elements of Y give the same allocation to the veto player.

Proposition 10 shows that, in continuous and consistent MPEs, long run equilibrium outcomes are insensitive to the 
distribution of agenda setting power, the discount factor and the initial division of the dollar, as long as the veto player has 
some ability to set the agenda.

Proposition 10. In any consistent and continuous MPE of the game with δ ∈ [0, 1), s0 ∈ �, and pv ∈ (0, 1], the unique irreducible 
absorbing set is a singleton and its only element is full appropriation of the dollar by the veto player.

The proof is presented in the Appendix but I sketch here the argument. Above I established that any irreducible ab-
sorbing set of an MPE must be composed by policies giving the same amount, k ∈ [0, 1], to the veto player (Proposition 9) 
and that Y = {(1, 0, 0)} is an irreducible absorbing set (Proposition 8(a)) in any MPE. Thus, to prove the statement from 
Proposition 10, it is sufficient to show that any set of policies giving the same amount k < 1 to the veto player cannot be 
an irreducible absorbing set. I then show that for any status quo policy in the irreducible absorbing set of a consistent MPE, 
each player proposes the same policy (Lemma 6) and the equilibrium proposals of non-veto players are minimal winning 
coalitions (Lemma 7). This allows me to characterize the continuation value each non-veto player derives from any policy 
in the irreducible absorbing set as a function of δ, pv and two parameters. At this point, I can derive a contradiction. Let 
Y be an irreducible absorbing set and assume k < 1. Since U v(y) = k

1−δ
for any y ∈ Y and, in any MPE, U v(s) ≥ sv

1−δ
, the 

veto player would be strictly better off moving to a policy outside of Y where he receives a higher allocation. Using the 
continuation values of non-veto players and continuity, I show that when the veto player proposes he can always find a 
proposal which allocates to himself strictly more than k and that is weakly preferred to the status quo by at least one 
non-veto player.

Finally, Proposition 11 tackles the limit, yet interesting, case where the veto player has no power to propose and shows 
that this institutional measure is effective in preventing the expropriation of non-veto players in the class of continuous and 
consistent MPEs.

Proposition 11. In any consistent and continuous MPE of the game with pv = 0, the allocation to the veto player in any period is the 
amount in the initial status quo, s0

v .

In the proof, which is presented in the Appendix, I first show that, in this case, the veto player’s continuation value from 
any policy is strictly increasing in his allocation. Thus, the veto player never accepts a reduction to his allocation. Since the 
veto player never proposes, this means that, to prove Proposition 10, it is sufficient to rule out that equilibrium proposals 
by either non-veto player increase the allocation to the veto player. Proceeding towards a contradiction, I show that, if this 
were the case, consistency would imply that one non-veto player proposes the same increased allocation to the veto player 
for an interval of status quo policies; and that, for the same interval of policies, the other non-veto player is better off 
offering the status quo allocation to the veto player. In turn, this would lead to discontinuous continuation values.

7. Experimental design

The theory provides sharp empirical implications, in particular on the shadow of the future in standing committees, 
that is, on how different degrees of patience affects legislators’ bargaining behavior and the allocation of resources. In the 
remainder of the paper, I assess the empirical validity of these theoretical predictions with the use of controlled laboratory 
experiments, which have some important advantages over field data when studying a highly structured dynamic environ-
ment such as the one in this paper (Falk and Heckman 2009).

The experiments were conducted at the Rady Behavioral Laboratory between November 2012 and February 2013. Sub-
jects were undergraduate students from the University of California San Diego and were recruited from a database of 
volunteer subjects. Eight sessions were run, using a total of 96 subjects. No subject participated in more than one ses-
sion.

The experimental treatment is the discount factor, that is, the degree of patience of the committee. I conduct four 
sessions with low patience committees (δ = 0.50), and four sessions with high patience committees (δ = 0.75). Discount 

14 Note that this is the continuous policies analogous of what Anesi and Duggan (2017) showed for a dynamic legislative bargaining game with a finite 
set of feasible policies and strict utilities.
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Table 1
Experimental design.

Treatment δ Sessions Committees Subjects

High Patience 3/4 4 160 48
Low Patience 1/2 4 320 48

factors were induced by a random termination rule: after each round of the same game, a fair die was rolled by the 
experimenter at the front of the room, with the outcome determining whether the game continued to another round (with 
probability δ). This is a standard technique used in the experimental literature to preserve the incentives of infinite horizon 
games in the laboratory (Roth and Murnighan 1978, Fréchette and Yuksel 2017).15

All sessions were conducted with 12 subjects, divided into 4 committees of 3 members each—one veto player and two 
non-veto players. Veto players were selected randomly at the beginning of the session, with their role as veto players 
remaining fixed throughout the session. Committees stayed the same throughout the rounds of a given game, and subjects 
were randomly rematched into committees between games. The exogenous amount of resources in each round was 60 
experimental units (corresponding to $2). At the beginning of each game, an initial status quo was randomly chosen by the 
computer among all vectors of three non-negative integers which sum to 60. After being informed of the initial status quo, 
each committee member was prompted to enter a provisional proposal. After all members had entered a provisional proposal, 
one was selected at random to become the proposed budget. This proposal was then voted on against the status quo, which 
was referred to as the standing budget. The proposed budget defeated the standing budget with the approval of the veto 
player and at least one non-veto player. Whichever budget passed the voting stage was the policy that was implemented 
in that round, each member received earnings accordingly, and the budget that just passed became the new status quo. 
Instructions were read aloud and subjects were required to correctly answer all questions on a short comprehension quiz 
before the experiment was conducted. The experiments were conducted via computers.16

Table 1 summarizes the experimental design.

8. Experimental results

Unless otherwise noted, in this Section, I use random effects panel regressions with standard errors clustered at the ses-
sion level to compare policy outcomes and bargaining behavior between different treatments Clustering at the session level 
accounts for potential interdependencies between observations that come from random re-matching of subjects between 
games in a session.17

8.1. Policy outcomes and dynamics

The evolution of policies over time provides a clear picture of outcome dynamics, since it provides a synthetic description 
of aggregate behavioral data on both proposal making and voting. One way to represent the data compactly is to cluster 
policies in seven regions. The D regions correspond to dictatorial allocations where one committee member receives the 
lion’s share of the budget: D1, D2 and DV are the regions where, respectively, committee member 1, committee member 
2 or the veto player receives at least 2/3 of the budget, that is, 40 out of 60 tokens. The U region consists of universal 
allocations, where all committee members receive at least 1/4 of the budget (15 tokens out of 60) and, thus, the budget is 
equally, or nearly equally, shared. Finally, the C regions correspond to the remaining allocations, where only two committee 
members receive a substantial share of the budget, while the third committee member is assigned a negligible share: C12 
is the coalition composed of committee member 1 and committee member 2; C1V is the coalition composed of committee 
member 1 and the veto player; and C2V is the coalition composed of committee member 2 and the veto player.

Before discussing the results, it is useful to recall the theoretical predictions. If the status quo is in region U or C12, the 
MPE from Proposition 1 predicts that policy moves immediately to a region where the budget is shared by the members 
of a minimal winning coalition (that is, to region C1V or C2V), regardless of the identity of the proposer. If the status 
quo is in region C1V or C2V, the MPE from Proposition 1 predicts that the status quo is maintained or that policy moves 
to the opposite side of �. In this latter case, if the veto player is proposing and the initial status quo gives him enough, 
policy transitions to region DV. Finally, if the status quo lies in region DV, policy almost always stays there. The predicted 
evolution of policies between these regions is very similar between the two treatments. The theory does predict sharp 
differences between high and low patience committees for finer details of behavior and I investigate them below.

The overall frequency of each region and the transition probabilities between each pair of regions for the two treatments 
is summarized in Table 2. For each panel, the last row gives the overall outcome frequencies, excluding the initial status 

15 The length of a game ranged from 1 to 13 rounds. To ensure the same number of expected rounds (40), each of the high patience sessions lasted for 
10 games and each of the low patience sessions for 20 games.
16 Sample instructions are available in the Appendix. The computer program used in the experiment was an extension to the open source software 

Multistage.
17 See Fréchette (2012) for a discussion.
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Table 2
Policy frequencies and transition probabilities. Notes: ** and * indicate difference with 
High Patience is significant, respectively, at 1% and at 5% level (see p-values in Table 5).

Panel A: High Patience
Status Quo (t) Status Quo (t+1)

D1 D2 DV C12 C1V C2V U
Dictator 1 0.45 0.03 0.03 0.04 0.05 0.22 0.18
Dictator 2 0.12 0.40 0.07 0.07 0.14 0.05 0.14
Dictator V 0.00 0.00 0.98 0.00 0.01 0.01 0.01
Coalition 1 + 2 0.02 0.02 0.00 0.67 0.05 0.07 0.16
Coalition 1 + V 0.00 0.00 0.16 0.00 0.51 0.28 0.05
Coalition 2 + V 0.01 0.00 0.13 0.00 0.26 0.56 0.04
Universal 0.01 0.01 0.03 0.00 0.08 0.09 0.80
Frequency 0.05 0.02 0.36 0.04 0.13 0.16 0.23

Panel B: Low Patience
Status Quo (t) Status Quo (t+1)

D1 D2 DV C12 C1V C2V U
Dictator 1 0.22* 0.10** 0.11 0.00** 0.11 0.30 0.17
Dictator 2 0.14 0.32 0.16* 0.00** 0.16 0.06 0.16
Dictator V 0.00 0.00 0.97 0.01 0.00 0.00 0.03
Coalition 1 + 2 0.07 0.15 0.02 0.29* 0.15** 0.24** 0.07
Coalition 1 + V 0.01 0.03 0.20 0.00 0.43 0.22* 0.10
Coalition 2 + V 0.02 0.02 0.28** 0.00 0.20 0.42 0.06
Universal 0.05 0.01 0.04 0.00 0.23 0.13 0.55**
Frequency 0.05 0.05* 0.43 0.02** 0.15 0.15 0.15

quo policies, which were decided randomly by the computer to start each game. Each cell in the other seven rows gives 
the probability of moving to a policy in the column region when starting from a policy in the row region. I highlight four 
results from this table.18

Finding 1: Consistent with the theory, most policies give a positive amount of resources to the veto player and to, at most, one 
non-veto player. In both high and low patience committees, around 88% of all policies give a substantial share to the veto 
player. Moreover, only around 22% of all policies give a substantial share to both non-veto players (28% in high patience 
committees and 17% in low patience committees).

Finding 2: Consistent with the theory, allocations which give most resources to the veto player are an absorbing state. The chance 
of leaving region DV is around 2% in high patience committees and around 3% in low patience committees. This is the only 
absorbing state: the second most resilient region is U, which survives 80% of the time in high patience committees and 55% 
of the time in low patience committees (meaning that the status quo policy transitions to another region, respectively, 20% 
and 45% of the time).

Finding 3: Consistent with the theory, when the status quo lies in region C1V or C2V (giving a negligible amount of resources to one 
non-veto player), resources continue to be shared by a minimal winning coalition or policy transitions to region DV. When the status 
quo shares resources between the members of a minimal winning coalition, the policy implemented in that round lies in 
region C1V, C2V or DV 95% of the time in high patience committees and 86% of the time in low patience committees.

Finding 4: Contrary to the theory, the survival rate of allocations giving a substantial amount to both non-veto players is positive 
and greater in more patient committees. The diagonal of the transition matrices suggests that there is status quo inertia (at 
least within the boundaries of these regions) and this is true also for status quo policies which do not assign resources 
primarily to a minimal winning coalition — that is, policies where resources are mostly shared between the two non-veto 
players or policies where every committee members receive a non-negligible share. This inertia is statistically stronger in 
more patient committees: the chance a status quo in region C12 survives is 29% in low patience committees and 67% in 
high patience committees; the chance a status quo in region U survives is 55% in low patience committees and 80% in 
high patience committees. Moreover, while they represent only a small fraction of policies in both treatments, allocations in 
region C12 are more frequent in more patient committees (4% versus 2%) and this difference is statistically significant.

8.2. Veto player’s allocation

From the transition probabilities in Table 2, we can see that the policies slowly transition to the DV region, regardless 
of the initial status quo and degree of patience and that, once there, they do not leave this region. The transition to DV 
can happen directly: with the exception of region C12 in committees with high patience, there is a positive probability of 

18 Table 6 in the Appendix shows that these results are robust to a different classification of outcomes, which adopts a stricter definition of dictatorial 
and universal allocations. In Table 6, I define as dictatorial an allocation which gives at least 3/4 of the budget (45 out of 60 tokens) to a single committee 
member; and I define as universal an allocation which gives at least 3/10 of the budget (18 tokens out of 60) to each committee member.
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Fig. 5. Average allocation to veto player. Numbers on bars are observations (committees).

moving to region DV starting from any region. More frequently, the transition to DV happens indirectly: there is a substantial 
probability of moving to region DV when the status quo lies in a region where exactly one non-veto player has a negligible 
share of the budget—that is, regions C1V and C2V—and policies move to these regions at substantial rates starting from any 
other region (the only exception being region DV, which is an absorbing state).19 Since this is one of the main empirical 
implications of the theory, it is interesting to give a closer look to the evolution of the allocation to the veto player.

Fig. 5 shows the evolution of the average allocation to the veto player as the number of rounds played in the same 
game grows, separately for the two treatments. The first data point on the left is the average allocation to the veto player 
in the initial status quo policy randomly drawn by the computer in all games of the same treatment.20 The duration of 
each game is stochastic: the number of observations available for each round is different and higher rounds have fewer 
observations.21

Finding 5: Consistent with the theory, there is a ratchet effect in the allocation to the veto player, slower in more patient committees.
The allocation to the veto player gradually increases over time in both treatments with a veto player. The allocation to the 
veto player is larger in lower patience committees in all rounds.22

8.3. Proposal making

The experimental data is very rich and allow us to test the finer predictions of the model. To investigate the origin of 
the dynamic patterns described above, I decompose the determinants of the transition probabilities and analyze in detail 
proposal and voting behavior. Regarding proposing behavior, the model predicts that both veto and non-veto proposers 
completely expropriate one non-veto player; that veto proposers are forced to share resources more evenly with the other 
non-veto player in more patient committees; and that non-veto proposers give the veto player no more than what is granted 
by the current status quo.

Table 3 shows how proposers allocate resources among committee members. To compare proposals made at different 
status quo policies, I look at the premium proposed to each committee member, rather than at the absolute amount. The 
premium to a member is the difference between the amount proposed to that member by the agenda setter and the amount 
granted to that same member by the status quo policy. If the premium to a member is positive, this means the proposer is 
suggesting an increase to that member’s allocation.

19 Starting from regions C1V and C2V, policies move to region DV 14% of the time with high patience and 24% of the time with low patience. The 
probability of moving to region C1V or C2V starting from any region other than DV is at least 12% (in high patience committees, starting from region C12) 
and as large as 41% (in low patience committees, starting from region D1).
20 The initial allocation to the veto player is not statistically different between the two treatments (p-value: 0.593).
21 Fig. 5 shows only rounds for which we have at least 12 committees for each treatment. This covers 93% of all observations for high patience committees 

and 96% of all observations for low patience committees.
22 The difference between the High Patience and the Low Patience series is positive for all rounds and significant at the 5% level for round 1 (p-value: 

0.041), round 2 (p-value: 0.010), round 3 (p-value: 0.032), round 4 (p-value: 0.037), round 5 (p-value: 0.010), round 6 (p-value: 0.011) and at the 10% level 
for round 7 (p-value: 0.051). The lack of significance for round 8 (p-value: 0.650) can be due to the random termination rule, which means the number of 
observations for high rounds is small in both treatments. The existence of a ratchet effect is confirmed by the Tobit regressions presented in Table 8 in the 
Appendix.
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Table 3
Proposing behavior. Notes: For each treatment, the first column is for all observed proposals, the 
second column for proposals that are voted on and accepted; Rich Non-Veto (Poor Non-Veto) is 
the non-veto player who receives the most (least) in the status quo; Coalition Partner is the non-
proposing player who receives the most in the proposal; ** and * indicate difference with High 
Patience is significant, respectively, at 1% and at 5% level.

A: Veto Proposer High Patience Low Patience

ALL ACC ALL ACC

Mean Premium to Proposer 8.34 7.71 12.65* 12.77**
Mean Premium to Rich Non-Veto −15.09 −16.99 −19.15** −20.74**
Mean Premium to Poor Non-Veto 6.75 9.28 6.51 7.97
Mean Premium to Coalition Partner 7.11 8.97 5.00 5.79*
Observations 844 178 824 215

B: Non-Veto Proposer High Patience Low Patience

ALL ACC ALL ACC

Mean Premium to Proposer 8.12 9.12 10.09* 11.04
Mean Premium to Veto −0.83 3.86 −0.35 6.81**
Mean Premium to Other Non-Veto −7.29 −12.98 −9.74* −17.85**
Mean Premium to Coalition Partner 0.38 3.46 2.04 6.74**
Observations 1688 291 1648 316

Table 4
Probability of supporting a proposal: panel random fixed effects estimates with standard errors 
clustered at the session level. Notes: ** and * indicate, respectively, significant at 1% and at 5% level.

High Patience Low Patience

(1) (2) (3) (4)

Premium Me 0.016** 0.019** 0.013** 0.016**
(0.002) (0.000) (0.001) (0.001)

Premium Other Non-Proposer −0.007** 0.002 −0.007** −0.005**
(0.001) (0.003) (0.001) (0.001)

Constant 0.535** 0.493** 0.535** 0.545**
(0.021) (0.019) (0.039) (0.015)

Voter Type Veto Non-Veto Veto Non-Veto
Proposer Type Non-Veto Veto Non-Veto Veto
Pseudo-R2 0.2488 0.4136 0.3413 0.4798
Observations 566 556 560 528

Finding 6: As predicted by the theory, both veto and non-veto proposers expropriate resources from one non-veto player and 
share the spoils with a coalition partner. Regardless of their degree of patience and their role, proposers expropriate resources 
from a non-veto player and redistribute the spoils towards themselves and a coalition partner. In particular, veto proposers 
expropriate resources from the non-veto player who is allocated the largest amount in the status quo and give a significant 
premium to themselves and to the other non-veto player; and non-veto player expropriates the other non-veto player and 
give a significant premium to themselves and to the veto player.23

Finding 7: As predicted by the theory, veto proposers share resources more evenly with coalition partners in more patience commit-
tees. In general, both veto and non-veto proposers are less greedy and more generous with other committee members in more patient 
committees. The premium to a veto proposer and the premium to the non-veto coalition partner are, respectively, smaller 
and larger in high patience than in low patience committees. Moreover, veto (non-veto) proposers expropriate a lower 
amount from the rich non-veto player (the other non-veto player) when they are more patient; and non-veto proposers 
offer a larger amount to their coalition partner (the veto player) when they are more patient. As detailed in Table 3, these 
differences are statistically significant.

8.4. Voting decisions

To investigate the determinants of voting behavior, I run regressions for the likelihood of voting in favor of a proposal 
using premium to oneself and premium to the other non-proposer as the explanatory variables. I do this separately for 
different roles of proposer and voter—whether they are a veto or non-veto player—and for different treatments—columns 1 

23 As shown in Table 9 in the Appendix, this is true also when I restrict the analysis to status quo polices which gives a non-negligible amount to both 
non-veto players, that is, policies in regions U and C12.
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and 2 analyze behavior in high patience committees; columns 3 and 4 analyze behavior in low patience committees. Table 4
shows the results.24

Finding 8: Subjects vote selfishly and are less likely to support proposals which are more generous to the other non-proposer.
Regardless of patience and role, committee members are more likely to support a proposal when it offers a larger premium 
to themselves. Interestingly, the probability a non-veto player supports a proposal by the veto player does not depend on 
(high patience committees) or decreases in (low patience committees) the premium offered to the other non-veto player. 
The probability the veto player supports a proposal by a non-veto player decreases in the premium offered to the other 
non-veto player in both treatments.

9. Conclusions

This paper studies the consequences of veto power in a bargaining game with an evolving status quo policy. As the 
importance of the right to block a decision crucially depends on the status quo, a static analysis cannot draw general con-
clusions about the effect of veto power on policy capture by the veto player. Instead of making ad hoc assumptions on the 
status quo policy, I study veto power by exploring the inherently dynamic process via which the location of the current 
status quo is determined. I prove that there exists an equilibrium of this dynamic game such that the veto player is even-
tually able to extract all resources, irrespective of the discount factor and the initial agreement, and that this is the unique 
stable outcome in a class of MPEs. This result shows that, in the long run, the right to veto is extremely powerful, especially 
if coupled with proposal power. This is true even when non-veto legislators are patient, and take into account the loss in 
future bargaining power implied by making concessions to veto players in the current period. At the same time, institutional 
measures can be effective in promoting more equitable outcomes, at least in the short run: reducing the veto player’s ability 
to set the agenda decreases the speed of convergence to the veto player’s ideal policy, and assigning monopolistic agenda 
setting power to non-veto players prevents the veto player from expropriating other legislators. The main predictions of 
the theory find support in the behavior of committees bargaining in controlled laboratory experiments: outcomes evolve 
according to the predicted transition probabilities, albeit with stronger persistence; the allocation to the veto player gradu-
ally increases over time; and patient committees exhibit significantly different proposal and voting behavior than impatient 
committees.

While the results in this paper certainly add to our understanding of the incentives present in real world legislatures, the 
setup is intentionally very simple and uses a number of specific assumptions. There are many possible directions for next 
steps in this research. First, while I have limited the analysis to committees with three legislators and one veto player, it 
would certainly be interesting to extend the asymptotic result of full appropriation by the veto player(s) to legislatures with 
an arbitrary number of veto and non-veto legislators. The existence proofs for the equilibria proposed in this paper rely on 
constructing the equilibrium strategies, and the associated continuation values, for any allocation of the dollar, s ∈ �. It is 
a challenging task to extend this existence result and to characterize an MPE with a higher number of legislators, as the 
dimensionality of the state space increases and tractability is quickly lost. In the Appendix, I introduce two assumptions 
to preserve the analytical tractability of the model: I assume that only veto players are able to make proposals and I 
restrict the set of feasible allocations to those with, at most, two types of non-veto players, a subset who receives zero 
and a subset who receives the same, non-negative amount. This allows me to study the effect of competing veto powers, 
committee size and majority requirements on veto players’ ability to appropriate resources in the short and in the long run. 
I show that these institutional measures do not prevent complete expropriation of non-veto players in the long run but can 
affect short run outcomes. Future research could explore the dynamics of a larger legislature using numerical methods, a 
solution often adopted in the literature on dynamic models with endogenous status quo (Baron and Herron 2003, Penn 2009, 
Battaglini and Palfrey 2012, Duggan et al. 2008). Second, this study analyzes a divide-the-dollar game where legislators’ 
preferences are purely conflicting. This is a natural starting point to analyze the consequences of veto power in a dynamic 
setting as it lays bare the incentives at work. However, legislative committees make decisions on many policy domains 
where agents’ preferences are partially aligned. Extending the policy space beyond the pure distributive setting—either 
considering a unidimensional policy space or allowing resources to be allocated to a pubic good—is an important direction 
for future work. Finally, on the experimental side, one interesting possibility is to allow for unrestricted communication 
among committee members. Recent experimental studies on dynamic bargaining show that communication affects the 
prevailing norm of fairness (Baron et al. 2017) and makes it easier to sustain non-stationary, history-dependent strategies 
(Agranov et al. 2020).

Appendix A. Proofs of propositions from Section 4

A.1. Proof of Proposition 1

Before proceeding to the proof, I introduce two formal definitions:

24 I exclude proposers from the analysis. Excluding votes between identical allocations, subjects vote in favor of their own proposal 91% in High Patience 
and 94% in Low Patience.
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Definition 4 (Markov strategy). A Markov strategy is a pair of functions, σi(s) = (μi[·|s], Ai(s)), where μi[z|s] represents the 
probability that legislator i makes the proposal z when recognized, conditional on the state being s; and Ai(s) represents 
the allocations for which i votes yes when the state is s.

Definition 5 (Legislators’ demands). For an MPE, non-veto legislator j’s demand when the state is s is the minimum amount 
d j(s) ∈ [0, 1] such that for a proposal x ∈ � with x j = d j(s), xv = 1 − d j(s), we have U j(x) ≥ U j(s). Similarly, veto legislator 
v ’s demand when the state is s is the minimum amount dv (s) ∈ [0, 1] such that for a proposal x ∈ � with xv = dv(s), 
x j = 1 − dv (s), for j = 1, 2, we have U v(x) ≥ U v(s).

The results of Proposition 1 follow from the existence of an MPE with the following minimal winning coalition proposal 
strategies for all s ∈ �, where s1 ≥ s2:

• Case A 
(

s1 ≤ 1 − 3−δ
3−2δ

s2, s1 ≥ 3−δ
3−2δ

s2

)
:

xv = [1 − d2,0,d2],x1 = [dv ,1 − dv ,0],x2 = [dv ,0,1 − dv ]
dv = sv − δs2

3 − 2δ

d2 = δ

3 − 2δ
s1 + (3 − δ)

(3 − 2δ)
s2

• Case B 
(

s1 > 1 − 3−δ
3−2δ

s2, s1 ≥ 27−27δ+3δ2+δ3

(3−2δ)(3−δ)2 s2 + δ2

(3−δ)2

)
:

xv = [1 − d2,0,d2],x1 = [dv ,1 − dv ,0],x2 = [dv ,0,1 − dv ]
dv = 0

d2 = 9 − 12δ + 3δ2

(3 − 2δ)2
s2 + δ

(3 − 2δ)

• Case C 
(

s1 > 6−3δ
2(3−δ)

− s2, s1 < 27−27δ+3δ2+δ3

(3−2δ)(3−δ)2 s2 + δ2

(3−δ)2

)
:

xv =
{ [1 − d2,d2,0]

[1 − d2,0,d2]
w/ Pr = 1 − μC

v
w/ Pr = μC

v
,x1 = [dv ,1 − dv ,0],x2 = [dv ,0,1 − dv ]

dv = 0

d2 = (−3 + δ)(3δ2 − 12δ + 9)

(−3 + 2δ)(δ2 − 15δ + 18)
(s1 + s2) + (−3 + δ)(6δ − 4δ2)

(−3 + 2δ)(δ2 − 15δ + 18)

μC
v = (δ3 + 3δ2 − 27δ + 27)s1 + (2δ3 − 15δ2 + 36δ − 27)s2 − 2δ3 + 3δ2

δ
[
(3δ2 − 12δ + 9)(s1 + s2) + 6δ − 4δ2

]
• Case D 

(
s1 ≤ 6−3δ

2(3−δ)
− s2, s1 < 3−δ

3−2δ
s2

)
:

xv =
{ [1 − d2,d2,0]

[1 − d2,0,d2]
w/ Pr = 1 − μD

v
w/ Pr = μD

v
,x1 = [dv ,1 − dv ,0],x2 = [dv ,0,1 − dv ]

dv = sv − δs2

3 − 2δ

d2 = (3 − δ)(9 − 6δ − δ2)

(3 − 2δ)(δ2 − 15δ + 18)
s1 + (3 − δ)(9 − 6δ + δ2)

(3 − 2δ)(δ2 − 15δ + 18)
s2

μD
v = (δ3 − 6δ2 + 27δ − 27)s1 + (−δ3 + 12δ2 − 36δ + 27)s2

δ
[
(δ2 + 6δ − 9)s1 + (−δ2 + 6δ − 9)s2

]
It is tedious but straightforward to check that, if players play the proposal strategies in cases A-D and these proposals 

pass, their continuation values are as follows:

• Case A

v v(s) = 1 − 2 − δ
s1 − 1

s2 (3)

1 − δ (3 − δ)(1 − δ) (1 − δ)
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v1(s) = (3 − 3δ + δ2)

(3 − δ)2(1 − δ)
s1 + (3 − δ)

(3 − δ)2(1 − δ)
s2 (4)

v2(s) = (3 − 2δ)

(3 − δ)2(1 − δ)
s1 + (6 − 5δ + δ2)

(3 − δ)2(1 − δ)
s2 (5)

• Case B

v v(s) = 1

(1 − δ)(3 − δ)
− (3 − 4δ + δ2)

(3 − 2δ)(1 − δ)(3 − δ)
s2

v1(s) = (3δ − 4δ2 + δ3)

(3 − δ)2(1 − δ)(3 − 2δ)
s2 + (9 − 15δ + 9δ2 − 2δ3)

(3 − δ)2(1 − δ)(3 − 2δ)

v2(s) = (3 − 2δ)

(3 − δ)2(1 − δ)
+ (3 − 4δ + δ2)

(3 − δ)2(1 − δ)
s2

• Case C

v v(s) = −9 − 7δ2 + 15δ + δ3

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)
(s1 + s2) + 2δ2 + 18 − δ3 − 15δ

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)

v1(s) = − δ4 − 13δ3 + 48δ2 − 63δ + 27

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ
s1 − 6δ3 − 33δ2 + 54δ − 27

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ
s2 +

+ −8δ3 + 24δ2 − 18δ

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ

v2(s) = − δ4 − 13δ3 + 48δ2 − 63δ + 27

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ
s2 − 6δ3 − 33δ2 + 54δ − 27

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ
s1 +

+ −8δ3 + 24δ2 − 18δ

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ

• Case D

v v(s) = δ3 − 23δ2 + 63δ − 45

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)
s1 + δ3 − 15δ2 + 51δ − 45

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)
s2 +

+ 18δ2 + 54 − δ3 − 63δ

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)

v1(s) = − δ4 − 21δ3 + 72δ2 − 81δ + 27

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ
s1 − 2δ3 − 15δ2 + 36δ − 27

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ
s2

v2(s) = − −2δ3 − 9δ2 + 36δ − 27

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ
s1 − δ4 − 17δ3 + 66δ2 − 81δ + 27

(−1 + δ)(−3 + δ)(δ2 − 15δ + 18)δ
s2

On the basis of these continuation values, we obtain players’ expected utility functions, Ui(x) = xi + δV i(x). The reported 
demands are in accordance with Definition 2. In particular, di , i = 1, 2 and dv can be easily derived from the following 
equations:

si + δV i(s) = di + δV i([1 − di,di,0])
sv + δV v(s) = dv + δV v([dv ,1 − dv ,0])

The demands for non-veto player 1 are never part of a proposed allocation and have therefore been omitted in the 
statement of the equilibrium proposal strategies above but we will use them in the remainder of the proof. In cases C and 
D, the mixing of the veto player is such that d1 = d2. In the other two cases, d1 is as follows:

• Case A 
(

s1 ≤ 1 − 3−δ
3−2δ

s2, s1 ≥ 3−δ
3−2δ

s2

)
:

d1 = (4δ2 − 12δ + 9)

(3 − 2δ)2
s1 + (3δ − δ2)

(3 − 2δ)2
s2

• Case B 
(

s1 > 1 − 3−δ
3−2δ

s2, s1 ≥ 27−27δ+3δ2+δ3

(3−2δ)(3−δ)2 s2 + δ2

(3−δ)2

)
:

d1 = (27 − 63δ + 51δ2 − 17δ3 + 2δ4)

3
s1 + (3δ2 − 4δ3 + δ4)

3
s2 + 9δ − 15δ2 + 9δ3 − 2δ4

3
(3 − 2δ) (3 − 2δ) (3 − 2δ)
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Furthermore, all reported non-degenerate mixing probabilities are well defined. On the basis of the expected utility 
functions, Ui , we can then construct equilibrium voting strategies, A∗

i (s) = {x|Ui(x) ≥ Ui(s)}, i = {v, 1, 2}, for all s ∈ �. 
These voting strategies are obviously stage-undominated. Then, to prove Proposition 1 it suffices to verify the optimality 
of proposal strategies. To do so, we make use of five lemmas. We seek to establish an equilibrium with proposals that 
allocate a positive amount to at most one non-veto player. Lemma 1 shows that the expected utility function for these 
proposals satisfies some continuity and monotonicity properties. Lemma 2 proves that minimal winning coalition proposals 
are optimal among the set of feasible proposals in �. Lemma 3 establishes that the equilibrium demands of the veto player 
and one non-veto player sum to less than unity and that the demands of the two non-veto players are (weakly) ordered 
in accordance to the ordering of allocations under the state s. Lemma 4 then establishes that the proposal strategies for 
legislators i = {v, 1, 2} in Proposition 1 maximize Ui(x) over all x ∈ W (s) ∩ �, where W (s) is the set of all proposals that 
beat s in the voting stage. These proposals would then maximize Ui(x) over all x ∈ W (s) if there is no x ∈ W (s) ∩�/� that 
accrues i higher utility. We establish that this is indeed the case in Lemma 5.

Lemma 1. Consider a Markov Perfect strategy profile with expected utility Ui(s), s ∈ �, determined by the continuation values in 
equations (3)-(5). Then, for all x = (x, 1 − x, 0) ∈ � (a) Ui(x), i = {v, 1, 2} is continuous and differentiable with respect to x, (b) 
U v(x) is strictly increasing in x, while U1(s) and U2(s) is strictly decreasing in x.

Proof. An allocation x = (x, 1 − x, 0) ∈ � belongs to case A in Proposition 2. Therefore we can write Ui(x) = xi + δV i(x) as 
follows:

U v(x) = x + δ

1 − δ
− δ(2 − δ)

(3 − δ)(1 − δ)
(1 − x) (6)

U1(x) = 1 − x + δ
(3 − 3d + δ2)

(3 − δ)2(1 − δ)
(1 − x) (7)

U2(x) = δ
(3 − 2δ)

(3 − δ)2(1 − δ)
(1 − x) (8)

Ui(x) is linear and continuous in x for i = {v, 1}, establishing part (a) of the Lemma. Regarding part (b):

∂U v(x)

∂x
= 1 + δ(2 − δ)

(3 − δ)(1 − δ)
> 0

∂U1(x)

∂x
= −

(
1 + δ

(3 − 3d + δ2)

(3 − δ)2(1 − δ)

)
< 0

∂U2(x)

∂x
= −δ

(3 − 2δ)

(3 − δ)2(1 − δ)
< 0

∂U v (x)
∂x > 0 for any δ ∈ [0, 1), since both the numerator and the denominator of δ(2−δ)

(3−δ)(1−δ)
are positive for any δ ∈ [0, 1); 

∂U1(x)
∂x < 0 for any δ ∈ [0, 1), since both the numerator and the denominator of (3−3d+δ2)

(3−δ)2(1−δ)
are positive for any δ ∈ [0, 1); and 

∂U2(x)
∂x < 0 for any δ ∈ [0, 1), since both the numerator and the denominator of (3−2δ)

(3−δ)2(1−δ)
are positive for any δ ∈ [0, 1). �

By the definition of demands and the monotonicity established in part (b) of Lemma 1 we immediately deduce:

Lemma 2. Consider a Markov Perfect strategy profile with expected utility, Ui(x), for x ∈ �, i = {v, 1, 2}, given by (6)-(8). Ev-
ery minimal winning coalition proposal of the veto player x(v, i, di(s)), i = {1, 2} is such that x(v, i, di(s)) ∈ arg max{U v(x)|x ∈
�, Ui(x) ≥ Ui(s)}; similarly, every minimal winning coalition proposal of a non-veto player x(i, v, dv(s)), i = {1, 2} is such that 
x(i, v, di(s)) ∈ arg max{Ui(x)|x ∈ �, U v(x) ≥ U v(s)}.

Lemma 3. For all s ∈ �, the demands reported in Proposition 1 are such that (a) si ≥ s j ⇒ di ≥ d j , i, j = {1, 2}, and (b) di + dv ≤ 1, 
i = {1, 2}.

Proof. Part (a). Since we focus on the half of � in which s1 ≥ s2, we want to prove that d1 ≥ d2. In cases C and D the mixed 
strategy of the veto player is such that d1 = d2, so we focus on cases A and B.

• Case A:

(4δ2 − 12δ + 9)

(3 − 2δ)2
s1 + (3δ − δ2)

(3 − 2δ)2
s2 ≥ δ

3 − 2δ
s1 + (3 − δ)

(3 − 2δ)
s2

s1 ≥ 3 − δ
s2
3 − 2δ
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• Case B:

(27 − 63δ + 51δ2 − 17δ3 + 2δ4)

(3 − 2δ)3
s1 + (3δ2 − 4δ3 + δ4)

(3 − 2δ)3
s2 + 9δ − 15δ2 + 9δ3 − 2δ4

(3 − 2δ)3

≥ 9 − 12δ + 3δ2

(3 − 2δ)2
s2 + δ

(3 − 2δ)

s1 ≥ 27 − 27δ + 3δ2 + δ3

(3 − 2δ)(3 − δ)2
s2 + δ2

(3 − δ)2

Part (b). Since we focus on the half of the � in which s1 ≥ s2, by part (a) of the same Lemma, it is enough to prove that 
d1 + dv ≤ 1.

• Case A:

sv − δs2

(3 − 2δ)
+ (4δ2 − 12δ + 9)

(3 − 2δ)2
s1 + (3δ − δ2)

(3 − 2δ)2
s2 ≤ 1

sv + s1 + δ2

(3 − 2δ)2
s2 ≤ 1

which holds for any δ ∈ [0, 1), because sv + s1 + s2 = 1 and δ2

(3−2δ)2 ∈ [0, 1). To see this notice that δ2

(3−2δ)2 is monotonically 
increasing in δ and is equal to 1 when δ = 1.

• Case B:

(27 − 63δ + 51δ2 − 17δ3 + 2δ4)s1

(3 − 2δ)3
+ (3δ2 − 4δ3 + δ4)s2

(3 − 2δ)3
+ 9δ − 15δ2 + 9δ3 − 2δ4

(3 − 2δ)3
≤ 1

Notice that (27−63δ+51δ2−17δ3+2δ4)

(3−2δ)3 ≥ (3δ2−4δ3+δ4)

(3−2δ)3 for any δ ∈ [0, 1), so the LHS has an upper bound when s1 = 1 and 
s2 = 0. Therefore, we can prove the following inequality:

(27 − 63δ + 51δ2 − 17δ3 + 2δ4)

(3 − 2δ)3
+ 9δ − 15δ2 + 9δ3 − 2δ4

(3 − 2δ)3
≤ 1

(3 − 2δ)3

(3 − 2δ)3
≤ 1

• Case C:

(−3 + δ)(3δ2 − 12δ + 9)

(−3 + 2δ)(δ2 − 15δ + 18)
(s1 + s2) + (−3 + δ)(6δ − 4δ2)

(−3 + 2δ)(δ2 − 15δ + 18)
≤ 1

(s1 + s2) ≤ (δ − 6)(−3 + 2δ)

(−3 + δ)2

which holds for any δ ∈ [0, 1), since sv + s1 + s2 = 1 and (δ−6)(−3+2δ)

(−3+δ)2 ≥ 1 for any δ ∈ [0, 1). To see this notice that 
(δ−6)(−3+2δ)

(−3+δ)2 is monotonically decreasing in δ and it is equal to 5/4 when δ = 1.

• Case D:

(1 − s1 − s2) − δs2

3 − 2δ
− (3 − δ)(9 − 6δ − δ2)

(3 − 2δ)(δ2 − 15δ + 18)
s1 − (3 − δ)(9 − 6δ + δ2)

(3 − 2δ)(δ2 − 15δ + 18)
s2 ≤ 1

− −30δ2 + 54δ − 27 + 3δ3

(−3 + 2δ)(δ2 − 15δ + 18)
s1 − −9δ2 + 36δ − 27

(−3 + 2δ)(δ2 − 15δ + 18)
s2 ≤ 0

which holds for any δ ∈ [0, 1] because the coefficients of s1 and s2 in the right hand side are always non-positive: they are 
strictly increasing in δ and are equal to 0 for δ = 1. �

We now show that equilibrium proposals are optimal over feasible alternatives in �.
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Lemma 4. μi[z|s] > 0 ⇒ z ∈ arg max{Ui(x)|x ∈ W (s) ∩ �}, for all z, s ∈ �.

Proof. All equilibrium proposals take the form of minimal winning coalition proposals: x(v, j, d j(x)) when the veto 
player is proposing and x( j, v, dv (x)) when a non-veto player is proposing. Also, whenever μv [x(v, 1, d1)|s] > 0 and 
μv [x(v, 2, d2)|s] > 0, we have d1 = d2 so that U v(x(v, 1, d1)) = U v(x(v, 2, d2)). Thus, in view of Lemma 2 it suffices to 
show that if μi[x(i, j, dj)|s] = 1, then Ui(x(i, j, d j)) = Ui(x(i, h, dh)), h 
= i, j, i.e. proposer i has no incentive to coalesce with 
player h instead of j. This is immediate for a non-veto player, since only coalescing with the veto player guarantees the pos-
sibility to change the state. To show that - for the veto player - if μv [x(v, j, dj)|s] = 1, then U v(x(v, j, d j)) = U v(x(v, h, dh)), 
j 
= h, it suffices to show dh ≥ d j by part (b) of Lemma 1. In Proposition 1 we have s1 ≥ s2, (by part (a) of Lemma 3) d1 ≥ d2, 
and when d1 
= d2, we have μv [x(v, 1, d1)|s] = 0 which gives the desired result. �

We conclude the proof by showing that optimum proposal strategies cannot belong in �/�. In particular, we show that 
if an alternative in �/� beats the status quo by majority rule, then for any player i we can find another alternative in �
that is also majority preferred to the status quo and improves i’s utility.

Lemma 5. Assume x ∈ W (s) ∩ �/�; then for any i = v, 1, 2 there exists y ∈ W (s) ∩ � such that Ui(y) ≥ Ui(s).

Proof. Consider first the veto player, i = v . Let x ∈ W (s) ∩�/�. Consider first the case x ∈ A∗
v(s). Then, x is weakly preferred 

to s by v and at least one i, i = 1, 2. Now set y = x(v, j, d j(x)), where d j(x) is the applicable demand from Proposition 1. 
We have U j(x(v, j, d j(x))) ≥ U j(x), by the definition of demand. From part (b) of Lemma 3 have dv(x) + d j(x) ≤ 1 and as 
a result xv (v, j, d j(x)) = 1 − d j(x) ≥ dv(x); hence, U v(x(v, j, d j(x))) ≥ U v(x), which follows from the weak monotonicity in 
part (b) of Lemma 1. Thus, y = x(v, j, d j(x)) ∈ W (s) (because is supported by v and j), and we have completed the proof 
for this case. Now consider the case x /∈ A∗

v(s), i.e. U v(s) > U v(x). Part (a) of Lemma 3 ensures that dv (s) + d j(s) ≤ 1, hence 
proposal y = x(v, j, d j(s)) has xv (v, j, d j(s)) = 1 − d j(s) ≥ dv(s). Then U v(y) ≥ U v(s) > U v(x), and y ∈ W (s) ∩ �.

Now consider a non veto player, i = 1, 2. Let x ∈ W (s) ∩ �/�. Consider first the case x ∈ A∗
i (s). Then, x is weakly 

preferred to s by v and (at least) i. Now set y = x(i, v, dv(x)), where dv (x) is the applicable demand from Proposition 1. 
We have U v(x(i, v, dv(x))) ≥ U v(x), by the definition of demand. From part (b) of Lemma 3 have dv (x) + di(x) ≤ 1 and as 
a result xi(i, v, dv(x)) = 1 − dv(x) ≥ di(x); hence, Ui(x(i, v, dv(x))) ≥ Ui(x), which follows from the weak monotonicity in 
part (b) of Lemma 1. Thus, y = x(i, v, dv(x)) ∈ W (s) ∩ � (because is supported by v and i), and we have completed the 
proof for this case. Finally, consider the case x /∈ A∗

i (s), i.e. Ui(s) > Ui(x). Part (a) of Lemma 3 ensures that dv (s) + di(s) ≤ 1, 
hence proposal y = x(i, v, dv(s)) has xi(i, v, dv(s)) = 1 − dv(s) ≥ di(s). Then Ui(y) ≥ Ui(s) > Ui(x), and y ∈ W (s) ∩ �, which 
completes the proof. �

As a result of Lemmas 4 and 5, equilibrium proposals are optimal over the entire range of feasible alternatives which 
completes the proof.

A.2. Proof of Proposition 2

The result of Proposition 2 follows once we establish that the proposal strategies in the equilibrium from Proposition 1
are weakly continuous in the status quo s, i.e., that in equilibrium a small change in the status quo implies a small change 
in proposal strategies and, by extension, to the equilibrium transition probabilities. Formally, we want to show that the 
equilibrium proposal strategies μ∗

i in the proof of Proposition 1 are such that for every s ∈ � and every sequence sn ∈ �

with sn → s, μ∗
i [·|sn] converges weakly to μ∗

i [·|s].
The equilibrium is such that μ∗

i [·|s] i = {1, 2} has mass on only one point x(i, v, dv (s)) and that μ∗
v [·|s] has mass on at 

most two points x(v, 1, d1(s)), and x(v, 2, d2(s)). It suffices to show that these proposals (when played with positive proba-
bility) and associated mixing probabilities are continuous in s. Continuity holds in the interior of Cases A-D in Proposition 1, 
so it remains to check the boundaries of these cases. In order to distinguish the various applicable functional forms we shall 
write dw

i and μw
v [·|s] where w = {A, B, C, D} identifies the case for which the respective functional form applies.

• Boundary of Cases A and B: at the boundary (as in the interior of the two cases) we have μA
v [x(v, 1, d2)|s] =

μB
v [x(v, 1, d2)|s] = 0; at the boundary we have s1 = 1 − 3−δ

3−2δ
s2, then:

dA
v = dB

v = 0

dA
1 = dB

1 = 1 − 9 − 12δ − 3δ2

(3 − 2δ)2
s2

dA
2 = dB

2 = 9 − 12δ − 3δ2

2
s2 + δ
(3 − 2δ) (3 − 2δ)
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• Boundary of Cases B and C: at the boundary we have s1 = 27−27δ+3δ2+δ3

(3−2δ)(3−δ)2 s2 + δ2

(3−δ)2 ; then:

μB
v [x(v,1,d2)|s] = μC

v [x(v,1,d2)|s] = 1

dB
v = dC

v = 0

dB
1 = dC

1 = 9 − 12δ + 3δ2

(3 − 2δ)2
s2 + δ

(3 − 2δ)

dB
2 = dC

2 = 9 − 12δ − 3δ2

(3 − 2δ)2
s2 + δ

(3 − 2δ)

• Boundary of Cases C and D: at the boundary we have s1 = 1 − 3−δ
3−2δ

s2; then:

μC
v [x(v,1,d2)|s] = μD

v [x(v,1,d2)|s] =
= (−36δ3 + 3δ4 + 153δ2 − 270δ + 162)s2 + 15δ3 − 2δ4 − 72δ2 + 135δ − 81[

(−12δ2 + 3δ3 + 9δ)s2 − 9δ2 − 2δ3 + 36δ − 27
]
δ

dC
v = dD

v = 0

dC
1 = dD

1 = dC
2 = dD

2 =
= (−3 + δ)(−12δ2 + 3δ3 + 9δ)

(2δ − 3)2(δ2 − 15δ + 18)
s2 + (−3 + δ)(−2δ3 − 9δ2 + 36δ − 27)

(2δ − 3)2(δ2 − 15δ + 18)

• Boundary of Cases D and A: at the boundary we have s1 = 3−δ
3−2δ

s2; then:

μD
v [x(v,1,d2)|s] = μA

v [x(v,1,d2)|s] = 1

dD
v = dA

v = sv − δs2

3 − 2δ

dD
1 = dA

1 = dD
2 = dA

2 = (3 − δ)2

(3 − 2δ)2
s2

A.3. Proof of Proposition 3

The result derives from the features of the MPE characterized in the proof of Proposition 1. In this MPE, once we 
reach allocations in the absorbing set �, which happens after at most one period, the veto player is able to increase his 
share whenever he has the power to propose, and keeps a constant share when not proposing. For any ε and any starting 
allocation s0, there exists a number of proposals by the veto player—which depends on δ—such that the veto player’s 
allocation in the status quo will be at least 1 − ε for all subsequent periods. Let this number of proposals be n∗(ε, δ, s0). 
Since each player has a positive probability of proposing in each period, the probability that in infinitely many periods the 
veto player proposes less than n∗(ε, δ, s0) is zero.

Appendix B. Proofs of propositions from Section 5

B.1. Proof of Proposition 4

This result follows directly from the equilibrium demand of the poorer non-veto player in the absorbing set �, dnv(s, δ) =
δ

3−2δ
snv . When δ = 0, this demand is zero. This means that, when the status quo is in �—a set that is reached in at most 

one period—the poorer non-veto supports any proposal by the veto player. The veto player can thus pass his ideal outcome 
as soon s ∈ � and he proposes. On the other hand, when δ ∈ (0, 1), this is not possible, and the poorer non-veto player 
always demands a positive share of the dollar to support any allocation that makes the veto player richer. The convergence 
in this case is only asymptotic as the non-veto player’s demand is always positive as long as the allocation to the richer 
non-veto is positive, that is as long as the poorer veto player does not have the whole dollar in the status quo.25

B.2. Proof of Proposition 5

As for Proposition 1, we focus on the allocations in which s1 ≥ s2. The other cases are symmetric. Consider the following 
equilibrium proposal strategies (all supported by a minimal winning coalition) and demands (as defined in the proof of 
Proposition 1):

25 Notice that when the initial division of the dollar—which is assumed to be exogenous—assigns the whole dollar to the veto player, then the status quo 
will never be changed and the veto player gets the whole dollar in every period.
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• CASE A: s1 ≤ 1 − 2−δ(1−pv )
2−δ(1+pv )

s2; s1 ≥ 2−δ(1−pv )
2−δ(1+pv )

s2

xv = [1 − dA
2 ,0,dA

2 ],x1 = [dA
v ,1 − dA

v ,0],x2 = [dA
v ,0,1 − dA

v ]
dA

v = sv − 2pvδ

2 − (1 + pv)δ
s2

dA
2 = δ(1 − pv)

2 − δ(1 + pv)
s1 + 2 − δ(1 − pv)

2 − δ(1 + pv)
s2

dA
1 = −4pvδ + 4 + 2pvδ2 − 4δ + p2

vδ2 + δ2

(2 − δ(1 + pv))2
s1 + −p2

vδ2 − δ2 − 2pvδ + 2δ + 2pvδ2

(2 − δ(1 + pv))2
s2

• CASE B: s1 > 1 − 2−δ(1−pv )
2−δ(1+pv )

s2; s1 ≥ p3
v δ3−2p2

v δ3+pv δ3+p2
v δ2−2pv δ2+δ2−4δ+4

(2−(1+pv )δ)(2−(1−pv )δ)(1−pv δ)
s2 + p3

v δ3−pv δ3−2p2
v δ2+2pv δ2

(2−(1+pv )δ)(2−(1−pv )δ)(1−pv δ)

xv = [1 − dB
2 ,0,dB

2 ],x1 = [dB
v ,1 − dB

v ,0],x2 = [dB
v ,0,1 − dB

v ]
dB

v = 0

dB
2 = −2pvδ2 + 2δ2 + 2pvδ − 6δ + 4

(2 − δ(1 + pv))2
s2 + p2

vδ2 − δ2 − 2pvδ + 2δ

(2 − δ(1 + pv))2

dB
1 = 16δ − 8 + 2p2

vδ2 + 8pvδ − 16pvδ
2 − 10δ2 − 2p3

vδ3 + 2δ3 − 2p2
vδ3 + 10pvδ3 − 2pvδ4 + 2p3

vδ4

(−2 + pvδ + δ)3
s1 + ...

+6pvδ3 + 2p3
vδ3 − 8p2

vδ3 + 4p2
vδ2 − 4pvδ2 + 4p2

vδ4 − 2pvδ4 − 2p3
vδ4

(−2 + pδ + δ)3
s2 + ...

+−δ3 − 7pvδ3 + 5p2
vδ3 + 4pvδ2 + 4pvδ − 8p2

vδ2 + 4δ2 + 2pvδ4 − 4δ + 3p3
vδ3 − 2p3

vδ4

(−2 + pδ + δ)3

• CASE C: s1 > 2−δ
2−δ(1−pv )

− s2; s1 <
p3

v δ3−2p2
v δ3+pv δ3+p2

v δ2−2pv δ2+δ2−4δ+4
(2−(1+pv )δ)(2−(1−pv )δ)(1−pv δ)

s2 + p3
v δ3−pv δ3−2p2

v δ2+2pv δ2

(2−(1+pv )δ)(2−(1−pv )δ)(1−pv δ)

xv =
{ [1 − dC

2 ,dC
2 ,0]

[1 − dC
2 ,0,dC

2 ]
w/ Pr = 1 − μC

v
w/ Pr = μC

v
,x1 = [dC

v ,1 − dC
v ,0],x2 = [dC

v ,0,1 − dC
v ]

dC
v = 0

dC
1 = dC

2 = (pvδ − 1)(−pvδ2 + δ2 + pvδ − 3δ + 2)

(pvδ + δ − 2)(p2
vδ2 − 2pvδ − δ + 2)

(s1 + s2) + (pvδ − 1)(p2
vδ2 + 2δ − δ2 − 2pvδ)

(pvδ + δ − 2)(p2
vδ2 − 2pvδ − δ + 2)

μC
v = (p3

vδ3 − 2p2
vδ3 + pvδ3 + p2

vδ2 − 2pvδ2 + δ2 − 4δ + 4)s1

2pvδ((−pvδ2 + δ2 + pvδ − 3δ + 2)s1 + (−pvδ2 + δ2 + pvδ − 3δ + 2)s2 + p2
vδ2 + 2δ − δ2 − 2pvδ)

+

+ (−p3
vδ3 + pvδ3 + p2

vδ2 − 4pvδ2 − δ2 + 4pvδ + 4δ − 4)s2

2pvδ((−pvδ2 + δ2 + pvδ − 3δ + 2)s1 + (−pvδ2 + δ2 + pvδ − 3δ + 2)s2 + p2
vδ2 + 2δ − δ2 − 2pvδ)

+

+ p3
vδ3 − pvδ3 − 2p2

vδ2 + 2pvδ2

2pvδ((−pvδ2 + δ2 + pvδ − 3δ + 2)s1 + (−pvδ2 + δ2 + pvδ − 3δ + 2)s2 + p2
vδ2 + 2δ − δ2 − 2pvδ)

• CASE D: s1 ≤ 2−δ
2−δ(1−pv )

− s2; s1 <
2−δ(1−pv )
2−δ(1+pv )

s2

xv =
{ [1 − dD

2 ,dD
2 ,0]

[1 − dD
2 ,0,dD

2 ]
w/ Pr = 1 − μD

v
w/ Pr = μD

v
,x1 = [dD

v ,1 − dD
v ,0],x2 = [dD

v ,0,1 − dD
v ]

dD
v = sv − 2pvδ

2 − (1 + pv)δ
s2

dD
1 = dD

2 = (pvδ − 1)(2p2
vδ3 − 2pvδ3 − 3p2

vδ2 + pvδ2 − 2δ2 + 3pvδ + 7δ − 6)

(−3 + 2δ)(pvδ + δ − 2)(p2
vδ2 − 2pvδ − δ + 2)

s1 +

+ (pvδ − 1)(p2
vδ3 − 2pvδ3 + δ3 − 3p2

vδ2 + 3pvδ2 − 4δ2 + 3pvδ + 7δ − 6)

(−3 + 2δ)(pvδ + δ − 2)(p2
vδ2 − 2pvδ − δ + 2)

s2

μD
v = (4p3

vδ4 − 4p2
vδ4 − 6p3

vδ3 + 4p2
vδ3 + 2δ3 + 3p2

vδ2 − 11δ2 + 20δ − 12)s1

T
+

+ (−p3
vδ4 + pvδ4 − 6pvδ3 − 2δ3 + 3p2

vδ2 + 14pvδ2 + 11δ2 − 12pvδ − 20δ + 12)s2
T
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where T = 2pvδ[(2p2
vδ3 − 2pvδ3 − 3p2

vδ2 + pvδ2 − 2δ2 + 3pvδ + 7δ − 6)s1 + (p2
vδ3 − 2pvδ3 + δ3 − 3p2

vδ2 + 3pvδ2 − 4δ2 +
3pvδ + 7δ − 6)s2], and μC

v , μD
v are the probabilities that the veto player coalesces with non-veto player 2 in cases C, and 

D respectively. These are well defined probability in [0,1] such that dC
1 = dC

2 and dD
1 = dD

2 , or such that s1 + δv1(s, μv , d2) =
s2 + δv2(s, μv , d2).

Remember that the veto player proposes with probability pv and each non-veto player with probability (1 − pv)/2. 
If proposers use the proposal strategies above and these proposals pass, players’ continuation values in cases A-D are as 
follows:

• Case A

v v(s) = 1

(1 − δ)
− (1 − pv)(2 − δ)

(1 − δ)[2 − δ(1 − pv)] s1 − 1

(1 − δ)
s2

v1(s) = (1 − pv)[2 − δ − δpv(3 − 2δ)]
2(1 − δ)(1 − pvδ)[2 − (1 − pv)δ] s1 + (1 − pv)

2(1 − δ)(1 − pvδ)
s2

v2(s) = p2
vδ − δ − 2pv + 2

2(1 − δ)(1 − pvδ)[2 − (1 − pv)δ] s1 + −2p2
vδ2 + 2pvδ2 + p2

vδ − 4pvδ − δ + 2pv + 2

2(1 − δ)(1 − pvδ)[2 − (1 − pv)δ] s2

• Case B

v v(s) = 2pv(pvδ2 + 3δ − δ2 − pvδ − 2)

(pvδ + 2 − δ)(−1 + δ)(−2 + pvδ + δ)
s2 + 2pv(−pvδ + 2 − δ)

(pvδ + 2 − δ)(−1 + δ)(−2 + pvδ + δ)

v1(s) = − (−2pvδ3 + 2p2
vδ3 − 2p2

vδ2 + 6pvδ2 − 4pvδ)(−1 + pv)

2(−2 + pvδ + δ)(−1 + δ)(pvδ + 2 − δ)(pvδ − 1)
s2 +

− (−4 + 2pvδ3 + 2p2
vδ3 − 8pvδ2 + 8pvδ − 3p2

vδ2 − δ2 + 4δ)(−1 + pv)

2(−2 + pvδ + δ)(−1 + δ)(pvδ + 2 − δ)(pvδ − 1)

v2(s) = −2p2
vδ2 − 2pvδ2 − 2p2

vδ + 6pvδ − 4pv

2(−1 + δ)(pvδ + 2 − δ)(pvδ − 1)
s2 − −p2

vδ + δ + 2pv − 2

2(pvδ + 2 − δ)(−1 + δ)(pvδ − 1)

• Case C

v v(s) = (p2
vδ3 + 2pvδ2 − pvδ3 − p2

vδ2 − pvδ − 3δ + δ2 + 2)pv

(−1 + δ)(pvδ + 2 − δ)(p2
vδ2 − 2pvδ − δ + 2)

(s1 + s2) +
(2δ − p2

vδ3 + pvδ3 − p2
vδ2 − pvδ2 + 4pvδ − 4)pv

(−1 + δ)(pvδ + 2 − δ)(p2
vδ2 − 2pvδ − δ + 2)

v1(s) = −−4 + δ3 − 5δ2 + 8δ − 2p2
vδ4 + 2p3

vδ4 − 2p3
vδ3 + 3p2

vδ3 + 2pvδ3 − p2
vδ2 − 6pvδ2 + 4pvδ

2δ(p2
vδ2 − 2pvδ − δ + 2)(pvδ + 2 − δ)(−1 + δ)

s1 +

− 4 − δ3 + 5δ2 − 8δ − p2
vδ2 + p2

vδ3

2δ(p2
vδ2 − 2pvδ − δ + 2)(pvδ + 2 − δ)(−1 + δ)

s2 +

−−4pvδ + 4δ + 4p2
vδ2 − 4δ2 + δ3 + pvδ3 − p2

vδ3 − p3
vδ3

2δ(p2
vδ2 − 2pvδ − δ + 2)(pvδ + 2 − δ)(−1 + δ)

v2(s) = − 4 − δ3 + 5δ2 − 8δ − p2
vδ2 + p2

vδ3

2δ(p2
vδ2 − 2pvδ − δ + 2)(pvδ + 2 − δ)(−1 + δ)

s1

−−4 + δ3 − 5δ2 + 8δ − 2p2
vδ4 + 2p3

vδ4 − 2p3
vδ3 + 3p2

vδ3 + 2pvδ3 − p2
vδ2 − 6pvδ2 + 4pvδ

2δ(p2
vδ2 − 2pvδ − δ + 2)(pvδ + 2 − δ)(−1 + δ)

s2

−−4pvδ + 4δ + 4p2
vδ2 − 4δ2 + δ3 + pvδ3 − p2

vδ3 − p3
vδ3

2δ(p2
vδ2 − 2pvδ − δ + 2)(pvδ + 2 − δ)(−1 + δ)

• Case D

v v(s) = H

(−1 + δ)(pvδ + 2 − δ)(p2
vδ2 − 2pvδ − δ + 2)(−3 + 2δ)

s1 +

+ I

(−1 + δ)(pvδ + 2 − δ)(p2
vδ2 − 2pvδ − δ + 2)(−3 + 2δ)

s2 +

+12 − 6pvδ − 20δ + 11δ2 + 7pvδ2 + 3p3
vδ3 − 2δ3 − 2pvδ3 − 3p2

vδ3 + 2p2
vδ4 − 2p3

vδ4

2 2
(−1 + δ)(pvδ + 2 − δ)(pvδ − 2pvδ − δ + 2)(−3 + 2δ)
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Fig. 6. Existence of MPE from Proposition 5. The shaded area represents the pairs of δ and pv for which the MPE does not exist.

v1(s) = − J

2δ(p2
vδ2 − 2pvδ − δ + 2)(−3 + 2δ)(pvδ + 2 − δ)(−1 + δ)

s1

− K

2δ(p2
vδ2 − 2pvδ − δ + 2)(−3 + 2δ)(pvδ + 2 − δ)(−1 + δ)

s2

v2(s) = − L

2δ(p2
vδ2 − 2pvδ − δ + 2)(−3 + 2δ)(pvδ + 2 − δ)(−1 + δ)

s1

− M

2δ(p2
vδ2 − 2pvδ − δ + 2)(−3 + 2δ)(pvδ + 2 − δ)(−1 + δ)

s2

where H = −11δ2 + 20δ + 2δ3 + 6pv − 12 + 6p3
vδ2 − 9p2

vδ + 5p2
vδ3 + 4pvδ3 + 3p2

vδ2 − 12pvδ2 + 5pvδ + 2p3
vδ4 − 2p2

vδ4 −
7p3

vδ3, I = 6pv + 16δ + 6p3
vδ2 − 9p2

vδ + 6p2
vδ3 + 3pvδ3 − p2

vδ2 − 12pvδ2 + 9pvδ + 2p3
vδ4 − 2p2

vδ4 − 6p3
vδ3 − 12 + δ3 − 7δ2, 

J = −12p3
vδ4 + 10p2

vδ4 + 9p3
vδ3 − 9p2

vδ2 − 21pvδ3 + 18pvδ2 + 12 + 6δ4 pv + 4p3
vδ5 − 4p2

vδ5 − 24δ3 + 51δ2 − 44δ + 4δ4, 
K = −p3

vδ4 + δ4 pv − 3pvδ3 − 9p2
vδ2 − 4pvδ2 + 12pvδ + 2p2

vδ3 + p2
vδ4 + 3p3

vδ3 + 6δ3 − 15δ2 − δ4 − 12 + 20δ, L = −2p3
vδ4 +

3p3
vδ3 + 6p2

vδ3 − 9p2
vδ2 − 3pvδ3 − 8pvδ2 + 12pvδ − 12 + 2δ4 pv + 2δ3 − 11δ2 + 20δ, and M = −11p3

vδ4 + 5δ4 pv − 21pvδ3 −
9p2

vδ2 + 22pvδ2 − 4p2
vδ3 + 11p2

vδ4 + 9p3
vδ3 + 4p3

vδ5 − 4p2
vδ5 − 20δ3 + 47δ2 + 3δ4 + 12 − 44δ.

One can show that these equilibrium strategies and the associated value functions are part of an MPE, using the same 
strategy employed in the proof of Proposition 1. The only difference with the proof of Proposition 1 is in the proof of 
Lemma 3 (b). With heterogenous recognition probabilities, dv + d2 is not always less than or equal to 1 when pv ∈ (0.5, 1). 
This condition is what determines the bound on δ in the statement of Proposition 5. In particular, the binding case is the 
allocation where s1 = s2 = 0.5. This is the case in which non-veto players are most demanding, as it can be proven by 
inspection of d2 in the four cases above. Setting s1 = s2 = 0.5 and solving for dC

v + dC
2 ≤ 1, we obtain the bound δ < δ =

1+3pv −
√

1+6pv −7p2
v

4p2
v

. Fig. 6 shows the space of (pv , δ) for which the MPE in Proposition 5 exists.

The irregular shape of the set of parameters for which the MPE from Proposition 5 exists merits discussion. The condition 
for existence of the MPE from Proposition 5 is determined by the ability of the veto player to convince a non-veto player to 
completely expropriate the other non-veto player. The allocation demanded by a non-veto player to accept such a proposal 
changes with δ, pv and s and the available resources are not always sufficient to meet this demand. To understand the 
intuition behind the irregular shape of the existence set, consider the status quo allocation where the dollar is split evenly 
between the two non-veto players, s = (0, 1/2, 1/2). This is the status quo allocation where the veto player’s bargaining 
power is the lowest and it is toughest to trigger convergence to full appropriation by the veto player. In the MPE from 
Proposition 4, a non-veto player proposes to appropriate the whole dollar; and the veto player offers a randomly chosen 
non-veto player the minimum amount he is willing to accept to completely expropriate the other non-veto player. The 
most tempting offer of this kind is the whole dollar. Non-veto player 1 prefers x = (0, 1, 0) to s = (0, 1/2, 1/2) if and only 
if

1 + δV 1((0,1,0)) ≥ 1

2
+ δV 1((0,1/2,1/2))

1 + δV 1((0,1,0)) ≥ 1 + δ

[
1 + δV 1((0,1,0)) + δV 1((0,0,1))

]

2 2 2
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(1 − δ) (1 + δV 1((0,1,0))) ≥ δ2 V 1((0,0,1)) (9)

where V 1((0, 1, 0)) is the continuation value of non-veto player 1 from the allocation which gives him the whole dollar; 
and V 1((0, 0, 1)) is the continuation value of non-veto player 1 from the allocation which gives the whole dollar to the 
other non-veto player. The temptation to accept is increasing in V 1((0, 1, 0)) and decreasing in V 1((0, 0, 1)). First, note 
that V 1((0, 0, 1)) > V 1((0, 1, 0)), that is, the continuation value of being the poorer non-veto player is larger than the 
continuation value of being the richer non-veto player. This is because, when the status quo lies in �, the poor non-veto 
player can pass a proposal swapping the non-veto players’ allocations and the veto player proposes a positive amount only 
to the poorer non-veto player. Second, both V 1((0, 0, 1)) and V 1((0, 1, 0)) are strictly increasing in δ. This is because, as δ
grows, the amount the veto player offers to his coalition partner increases. Moreover, V 1((0, 0, 1)) grows faster in δ than 
V 1((0, 1, 0)), because the poorer non-veto player benefits sooner of the veto player’s increased generosity. This means that 
the condition in equation (9) becomes more difficult to satisfy — that is, the best feasible offer the veto player can make 
to a non-veto player in state (0,1/2,1/2) becomes less tempting — as δ grows. Third, both V 1((0, 0, 1)) and V 1((0, 1, 0))

are strictly decreasing in pv . This is because, as pv grows, both the probability that a non-veto player proposes and the 
amount the veto player offers to his coalition partner decrease. Moreover, the speed at which V 1((0, 0, 1)) and V 1((0, 1, 0))

decrease in pv is different and it changes with pv . This is because the probability that the poorer non-veto player receives 
a positive amount at the end of the period while the richer non-veto player gets 0 is increasing in pv (as this happens 
exactly when the veto player proposes). At the same time, what the poorer non-veto player gains in this case, that is, the 
amount the veto player offers to the coalition partner, decreases with pv . As a consequence, V 1((0, 0, 1)) − V 1((0, 1, 0))

is non-monotonic in pv . For low values of pv , the first effect dominates and V 1((0, 0, 1)) − V 1((0, 1, 0)) grows in pv , 
reducing the ability of the veto player to convince a non-veto player to expropriate the other. For large values of pv , the 
second effect dominates and V 1((0, 0, 1)) − V 1((0, 1, 0)) decreases in pv , making it easier for the veto player to bribe 
a non-veto player. This effect of pv on the veto player’s ability to convince a non-veto player to completely expropriate 
the other complements the effect of δ for low values of pv but it counteracts it (and eventually dominates it) for high 
values of pv . Finally, as pv goes to 1, both V 1((0, 0, 1)) and V 1((0, 1, 0)) go to 0. This is because, when non-veto players 
have no chance to set the agenda, non-veto players cannot improve on their current allocation and, thus, the non-veto 
player who is completely expropriated is willing to accept any allocation proposed by the veto player. This means that, 
in the limit, the veto player is able to convince a non-veto player to completely expropriate the other regardless of δ
and s.

B.3. Proof of Proposition 6

The results in part (a) and (b) follow directly from the equilibrium demand of the poorer non-veto player in the absorbing 
set �, that is, dnv(s, δ) = δ(1−pv )

2−δ(1+pv )
snv . When δ = 0, this demand is zero. This means that, when the status quo is in �—a set 

that is reached in at most one period—the poorer non-veto player supports any proposal by the veto player. The veto player 
can thus pass his ideal outcome as soon s ∈ � and he proposes. On the other hand, when δ ∈ (0, 1), this is not possible, 
and the poorer non-veto player always demands a positive share of the dollar to support any allocation that makes the 
veto player richer. The convergence in this case is only asymptotic and the speed of the convergence is inversely related to 
dnv(s, δ), which is strictly increasing in δ for any pv ∈ (0, 1), strictly increasing in snv for any pv ∈ (0, 1) and any δ ∈ (0, 1], 
strictly decreasing in pv for any δ ∈ (0, 1). The result in part (c) follows directly from the equilibrium demand of the veto 
player. When pv = 0, all s ∈ � belong to Case A. In this case, we have, dA

v = sv − 2pv δ
2−(1+pv )δ

s2 which equals dA
v = sv if 

pv = 0. This means that, for any s ∈ �, either non-veto proposer offers sv to the veto player. Since the veto player has never 
a chance to propose he gets s0

v in all periods.

B.4. Proof of Proposition 7

Continuity of the expected utility functions hold once we establish continuity of the continuation value functions. Con-
tinuity of the continuation value functions holds in the interior of Cases A–D in the proof of Proposition 5, so it remains 
to check the boundaries of these cases. In order to distinguish the various applicable functional forms we shall write V w

i
where w = {A, B, C, D} identifies the case for which the respective functional form applies.

• Boundary of Cases A and B: at the boundary we have s1 = 1 − 2−δ(1−pv )
2−δ(1+pv )

s2, then:

V A
v = V B

v = 2pv

(1 − δ)(2 − δ(1 − pv))
− 2pv s2

2 − δ(1 + pv)

V A
1 = V B

1 = 1

1 − δ
− V A

v − V A
2

V A
2 = V B

2 = pv s2 + (1 − pv)(2 − δ(1 + pv))
1 − δpv 2(1 − δ)(2 − δ(1 − pv))(1 − δpv)
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• Boundary of Cases B and C: at the boundary we have

s1 = p3
v δ3−2p2

v δ3+pv δ3+p2
v δ2−2pv δ2+δ2−4δ+4

(2−(1+pv )δ)(2−(1−pv )δ)(1−pv δ)
s2 + p3

v δ3−pv δ3−2p2
v δ2+2pv δ2

(2−(1+pv )δ)(2−(1−pv )δ)(1−pv δ)
; then:

V B
v = V C

v = 2pv

(1 − δ)(2 − (1 − pv)δ)
− 2pv s2

2 − δ(1 + pv)

V B
1 = V C

1 = pvδ(1 − pv)s2

(1 − δpv)(2 − δ(1 + pv))
− 1

2

(−1 + pv)(2δ2 pv − 3δpv − δ + 2)

(1 − δ)(2 − δ(1 − pv))(1 − δpv)

V B
2 = V C

2 = 1

1 − δ
− V B

v − V B
1

• Boundary of Cases C and D: at the boundary we have s1 = 2−δ
2−δ(1−pv )

− s2; then:

V C
v = V D

v = pv(1 + δ)

(1 − δ)(2 − (1 − pv)δ)

V C
1 = V D

1 = s2

δ
+ 2δ2 + (p − 5)δ + 2

2(δ − 1)(2 + (−1 + pv)δ)δ

V C
2 = V D

2 = 1

1 − δ
− V C

v − V C
1

• Boundary of Cases D and A: at the boundary we have s1 = 2−δ(1−pv )
2−δ(1+pv )

s2; then:

V D
v = V A

v = 1

1 − δ
− 2(2 − δ − pv)

(1 − δ)(2 − δ(1 − pv))
s2

V D
1 = V A

1 = 1

1 − δ
− V D

v − V D
2

V D
2 = V A

2 = s2

1 − δ

Appendix C. Proofs of propositions from Section 6

C.1. Proof of Proposition 8

Part (a) If Y = {(1, 0, 0)} is an irreducible absorbing set, then V v((1, 0, 0)) = 1
1−δ

and U v((1, 0, 0)) = 1 + δV v((1, 0, 0)) =
1

1−δ
. Since the amount of resources available in any period is 1, V v (x) ≤ 1

1−δ
for any x ∈ � in any subgame perfect Nash 

equilibrium of the game. Thus, if x is such that xv < 1, we have U v(x) = xv + δV v(x) < 1
1−δ

. This means that the veto player 
is strictly worse off moving to a policy outside of Y and, thus, a) he will never propose a policy outside of Y and b) he will 
veto any policy outside of Y proposed by a non-veto player.

Part (b) Consider any allocation s ∈ �. In any SPE, the veto player can unilaterally implement the status quo in the current 
and all following periods, regardless of the identity of the proposer. The payoff from this strategy is sv and this establishes 
that V v(s) ≥ sv

1−δ
in any SPE.

Part (c) Consider any allocation s ∈ �. In any SPE, a non-veto player can unilaterally implement the status quo whenever 
he proposes. The payoff from this strategy is si in the history in which i proposes in this and all following periods. Since we 
are looking for a lower bound, suppose that at any other history, player i gets zero. We have established that, in any SPE,

V i(s) ≥ pnv si + p2
nvδsi + p3

nvδ2si + . . . + pt
nvδt−1si + . . . = pnv si

1 − δpnv

where pnv is the probability either non-veto player proposes and si is the allocation to i in s.

Part (d) Assume s ∈ � is an absorbing allocation. Then, Ui(s) = si
1−δ

for i = {v, 1, 2}. Since, as we established above, U v (x) ≥
xv

1−δ
for any x ∈ �, the veto player supports any reform of s as long as he is offered at least sv . We want to show that, 

when δ < 1
2−pnv

, either non-veto player prefers a feasible allocation other than s where the veto player receives at least 
sv to s. This means that this non-veto player will find it optimal to reform the status quo, with the support of the veto 
player, as soon as he has a chance to propose and, thus, that s cannot be absorbing. The non-veto player who has the least 
incentive to maintain the policy in s forever is the one with the lowest amount. Without loss of generality, assume s1 ≥ s2

and consider the incentive of non-veto player 2 to reform s. Non-veto player 2 can move to allocation (sv , 0, s1 + s2) with 
the support of the veto player. Non-veto player 2 strictly prefers allocation x = (sv , 0, s1 + s2) to (sv , s1, s2) if:
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s2

1 − δ
< s1 + s2 + δ

(
pnv(s1 + s2)

1 − δpnv

)
≤ s1 + s2 + δV 2(x) (10)

Note that the lower bound of the “temptation” to reform the status quo is increasing in s1. This means that the inequality 
will be hardest to satisfy when s1 = s2. In this case, the inequality becomes:

s2

1 − δ
< 2s2 + δ

(
pnv(2s2)

1 − δpnv

)
s2

1 − δ
<

2s2

1 − δpnv

1

2
<

1 − δ

1 − δpnv

δ <
1

2 − pnv
(11)

This establishes that when δ < 1
2−pnv

there is no s ∈ � other than (1,0,0) which is absorbing.

C.2. Proof of Proposition 9

Fix an MPE of the dynamic legislative bargaining game. Consider an irreducible absorbing set with respect to this MPE, Y
with |Y | = k ≥ 2, and enumerate the elements of Y as y1, . . . , yk . For each h = 1, . . . , k, let Yh ⊆ Y \{yh} denote the policies 
that occur with positive probability given status quo yh and enumerate the elements of Yh as zh,1, zh,2, . . . , zh,nh . For each 
h = 1, . . . , k and each l = 1, . . . , nh , the veto player must get a weakly higher dynamic payoff from zh,l than from yh . If this 
was not true, the veto player would block transition to policy zh,l and, thus, zh,l would not occur with positive probability 
given status quo yh . We have:

U v(zh,l) ≥ U v(yh)

Let m be a solution to maxh∈{1,...,k} U v(yh), so that ym maximizes the veto player’s dynamic payoff over Y , i.e., U v(ym) =
maxh=1,...,k V v(yh). Then for all l = 1, . . . , nm , we must have:

U v(zm,l) = U v(ym)

Thus, all the policies that occur with positive probability following ym also maximize the veto player’s dynamic payoff. Since 
Y is an irreducible absorbing set, this argument in fact implies that for all h = 1, . . . , k, we have U v(yh) = U v(ym), so that 
the dynamic payoff of the veto player is constant on Y , and we can denote this by U . Denote with yi,v the amount allocated 
to the veto player in policy yi . Choosing any yi, y j ∈ Y , we then have:

yi,v + δU = U v(yi)

= U v(y j)

= y j,v + δU

which implies yi,v = y j,v .

C.3. Proof of Proposition 10

Proposition 9 shows that any irreducible absorbing set must be composed by policies giving the same amount to the 
veto player. Proposition 8(a) shows that Y = {(1, 0, 0)} is an irreducible absorbing set. Thus, to prove the statement from 
Proposition 10 it is sufficient to show that any set of policies giving the same amount k < 1 to the veto player cannot be an 
absorbing set.

The proof uses two lemmas.

Lemma 6. Consider any consistent MPE of the dynamic legislative bargaining game with pv ∈ (0, 1] and let Y ⊆ � be an irreducible 
absorbing set with respect to this MPE. For any status quo y ∈ Y , player i = {v, 1, 2} proposes the same policy.

Proof. From Proposition 9, we know that any y ∈ Y gives the same allocation to the veto player. This means that, for any 
status quo policy y ∈ Y , we have yv = k, y1 = ρy(1 −k), and y2 = (1 −ρy)(1 −k), where k ∈ [0, 1] is the same for all policies 
in the set and ρy ∈ [0, 1] is specific to policy y. Thus, for any y ∈ Y , we have U v(y) = k

1−δ
and Av(y) = {x ∈ �|xv ≥ k}. 

This means that a proposing non-veto player faces the same acceptance set for any status quo policy in Y . Therefore, by 
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consistency, each non-veto player proposes the same policy for any status quo policy in Y . Denote this policy with xi , 
i = {1, 2}.

We now argue that also the veto player faces the same acceptance set for any policy in y and, in particular, that for 
any status quo policy y ∈ Y , the set of proposals that are supported by at least one non-veto player, that is, A1(y) ∪ A2(y), 
encompasses all policies where the veto player has yv = k.

Consider status quo s ∈ Y such that sv = 1 − k, s1 = ρs(1 − k), s2 = (1 −ρs)(1 − k) and a proposal x ∈ Y such that xv = k, 
x1 = ρx(1 − k), x2 = (1 − ρx)(1 − k). We want to show that, ∀ρs, ρx ∈ [0, 1], x ∈ A1(s) ∪ A2(s). Let z = 1 − k denote the sum 
of allocations to non-veto players in any policy in the irreducible absorbing set. Non-veto player 1 accepts x if and only if:

ρxz + δV 1(x) ≥ ρsz + δV 1(s)

(ρx − ρs)z ≥ δ [V 1(s) − V 1(x)] (12)

Non-veto player 2 accepts x if and only if:

(1 − ρx)z + δV 2(x) ≥ (1 − ρs)z + δV 2(s)

−(ρx − ρs)z ≥ δ [V 2(s) − V 2(x)] = −δ [V 1(s) − V 1(x)]

(ρx − ρs)z ≤ δ [V 1(s) − V 1(x)] (13)

The equality in the second line follows from the fact that V v (s) = V v(x) and 
∑

i={v,1,2} V i(s) = ∑
i={v,1,2} V i(x). It is easy 

to see that, for any ρs, ρx ∈ [0, 1], at least one condition is always satisfied. This means that the proposing veto player faces 
the same acceptance set for any status quo policy in Y . Therefore, by consistency, the veto player proposes the same policy 
for any status quo policy in Y . Denote this policy with xv . �

Lemma 7. Consider any consistent MPE of the dynamic legislative bargaining game with pv ∈ (0, 1] and let Y ⊆ � be an irreducible 
absorbing set with respect to this MPE: (a) V i(y), the continuation value function of player i = {v, 1, 2} from policy y, is constant over 
set Y ; (b) the equilibrium proposals of non-veto players when the status quo is y ∈ Y are MWC, that is, the proposer offers exactly 0 to 
the other non-veto player.

Proof. From Lemma 6, we know that ∀y ∈ Y , each player makes the same proposal, xi, i = {v, 1, 2}. As a consequence, 
V i(y), i = {v, 1, 2} is constant in set Y . Since U1(x1) = x1

1 + δV 1(x1) does not depend on the amount allocated to non-
veto player 2 in x1 , non-veto player 1 finds most advantageous to propose a policy which allocates the whole amount not 
allocated to the veto player to himself (as before, call this amount, which is identical for all policies in set Y , z). Similarly, 
since U2(x2) = x2

2 + δV 2(x2) does not depend on the amount allocated to non-veto player 1 in x2 , non-veto player 2 finds 
most advantageous to propose a policy which allocates z to himself. �

We are now ready to prove the statement from Proposition 10. Fix a consistent MPE. Consider the irreducible absorbing 
set with respect to this MPE, Y ⊆ �. The Lemmas above show that |Y | ≤ 3. The three policies which can belong to Y are 
the unique equilibrium proposals made by each player for any status quo in Y . Denote with xi, i = {1, 2}, each non-veto 
player’s equilibrium proposal for a status quo policy in the irreducible absorbing set, Y . In Lemma 7, we showed that 
x1 = {1 − z, z, 0}, x2 = {1 − z, 0, z}, where z ∈ [0, 1] is the allocation to the veto player in any policy in Y . Denote the veto 
player’s equilibrium proposal with xv = {1 − z, ρz, (1 − ρ)z}, where ρ ∈ [0, 1]. We can characterize the continuation value 
each non-veto player derives from any policy in the irreducible absorbing set as a function of z, ρ , δ and pv :

V 1 = 1 − pv

2
[z + δV 1] + 1 − pv

2
[0 + δV 1] + pv [ρz + δV 1] = 1 + (2ρ − 1)pv

2(1 − δ)
z

V 2 = 1 − pv

2
[z + δV 2] + 1 − pv

2
[0 + δV 2] + pv [(1 − ρ)z + δV 2] = 1 − (2ρ − 1)pv

2(1 − δ)
z

We, thus, have:

U1(x1) = z + δ
1 + (2ρ − 1)pv

2(1 − δ)
z

U1(x2) = 0 + δ
1 + (2ρ − 1)pv

2(1 − δ)
z

U2(x1) = 0 + 1 − (2ρ − 1)pv

2(1 − δ)
z

U2(x2) = z + 1 − (2ρ − 1)pv
z

2(1 − δ)
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Above we showed that all policies in an irreducible absorbing set give the veto player the same allocation, k ∈ [0, 1]. 
Assume, towards a contradiction, k < 1. First, note that, since U v (y) = k

1−δ
for any y ∈ Y and, in any MPE, U v(s) ≥ sv

1−δ
, 

the veto player would be strictly better off moving to a policy outside of the irreducible absorbing set where he receives a 
higher allocation. We want to show that, when the veto player proposes, he can implement such policies with the support 
of a non-veto player and, thus, that policies such that k < 1 cannot belong to an irreducible absorbing set.

Consider the status quo policy x1 ∈ Y . Since the veto player does not receive the whole pie (that is, k < 1) and, thus, 
z > 0, we have U1(x1) > U1(x2) and U2(x2) > U2(x1). This means that, by continuity, when the veto player proposes and 
the status quo is either x1 or x2 (an event which happens with probability 1), he can always find a proposal which allocates 
to himself strictly more than k and that is weakly preferred to the status quo by at least one veto player. Without loss 
of generality, consider status quo x1 ∈ Y . If the veto player proposes x2 = {1 − z, 0, z}, the dynamic payoff non-veto player 
2 receives from the proposal is strictly larger than the dynamic payoff he receives from the status quo, U2(x2) > U2(x1). 
Consider proposal w = {1 − z + ε, 0, z − ε}, which shocks x2 by redistributing ε from non-veto player 2 to the veto player. 
By continuity of the continuation values, there is ε > 0 such that U2(w) ≥ U2(x1) and, thus, w can be approved with the 
support of non-veto player 2.

C.4. Proof of Proposition 11

The proof uses a series of lemmas.

Lemma 8. In any continuous and consistent MPE of the dynamic bargaining game where pv = 0 and min{p1, p2} > 0: (a) U v(s)
depends only on sv ; (b) U v(s) is strictly monotone in sv ; (c) U v(s) is strictly increasing in sv .

Proof. Remember that U v(x) = xv + δV v(x), the dynamic payoff of the veto player from policy x.

Part (a). We want to show that ∀x, x′ ∈ �U v(x) = U v(x′) ⇔ xv = x′
v .

First, we prove that U v (x) = U v(x′) ⇒ xv = x′
v .

Fix an equilibrium and let xa(s) be the equilibrium proposal of agenda setter a ∈ {1, 2} given status quo s. Then, for all 
i ∈ {1, 2, v},

V i(s) =
∑

a∈{1,2}
pa

[
xa

i (s) + δV i
(
xa(s)

)] =
∑

a∈{1,2}
paUi

(
xa(s)

)

so that Ui(x) = xi + δ
∑

a∈{1,2} paUi
(
xa(x)

)
.

Now fix x and x′ such that U v (x) = U v(x′). Then, A(x) = A(x′) and, in any consistent MPE, xa(x) = xa(x′) for all j ∈ {1, 2}. 
Hence:

U v(x) − U v(x′) = xv + δ
∑

a∈{1,2}
paU v

(
xa(x)

) −
⎡
⎣x′

v + δ
∑

a∈{1,2}
paU v

(
xa(x′)

)⎤⎦ = xv − x′
v

Since U v(x) − U v(x′) = 0, we have xv = x′
v .

Second, we prove that U v (x) = U v(x′) ⇐ xv = x′
v .

Fix an equilibrium, a pair of policies x and x′ such that xv = x′
v , and assume, towards a contradiction, that U v (x) 
=

U v(x′). In any stationary equilibrium, U v (x) 
= U v(x′) and xv = x′
v imply x 
= x′ (because, otherwise, the continuation values 

from the two policies and, thus, the dynamic payoffs would be the same). This means that xv = x′
v < 1, since there are no 

two distinct policies which give 1 to the veto player. Without loss of generality, assume U v (x) < U v(x′). Because in any 
MPE, V v(s) ≥ sv

1−δ
and V v(s) ≤ 1

1−δ
, we have V v((1, 0, 0)) = 1

1−δ
. Since U v(x′) = x′

v + δV v(x′) and V v(x′) ≤ 1
1−δ

, x′
v < 1

implies U v (x′) < 1
1−δ

. To see this, note that, even when V v(x′) equals its upper bound, U v (x′) can equal 1
1−δ

only if x′
v = 1. 

We have U v((1, 0, 0)) = 1
1−δ

> U v(x′) > U v(x). By continuity of V v and hence of U v , there exists α ∈ (0, 1) such that 
U v(α(1, 0, 0) + (1 − α)x) = U v(x′). But as we proved above, U v (x) = U v(x′) ⇒ xv = x′

v . This implies that, if U v (α(1, 0, 0) +
(1 − α)x) = U v(x′), then (α(1, 0, 0) + (1 − α)x)v = x′

v , which is a contradiction since it rewrites as α + (1 − α)xv = x′
v , or, 

equivalently, α = αxv (since xv = x′
v ), or, equivalently, xv = 1 (since α ∈ (0, 1)).

Part (b). To see that U v(s) is strictly monotone in xv , take x, x′ ∈ X with xv < x′
v and assume, towards a contradiction, 

that U v (x) = U v(x′). Then, by Lemma 1, we have xv = x′
v , a contradiction.

Part (c). To prove that U v(s) is strictly increasing in xv , it suffices to show that it is not strictly decreasing. Assume, 
towards a contradiction, that U v (x) is strictly decreasing in xv . Since U v((1, 0, 0)) = 1 , this implies that U v(x) > 1
1−δ 1−δ
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∀x ∈ � \ {(1, 0, 0)}. This is not feasible since U v (x) ≤ 1
1−δ

∀x ∈ � (since the largest allocation the veto can receive in any 
period is 1). �

Lemma 9. In any continuous and consistent MPE of the dynamic bargaining game where pv = 0 and min{p1, p2} > 0, V i(s) depends 
only on sv for any i ∈ {v, 1, 2} and any policy s ∈ �.

Proof. Denoting the equilibrium proposal by agenda setter a ∈ {1, 2} for status quo s ∈ � with xa(s), the value function of 
player i ∈ {v, 1, 2} from policy s ∈ � can be written as:

V i(s) =
∑

a∈{1,2}
pa

[
xa

i (s) + δV i(xa(s))
]

(14)

Since, by Lemma 8, U v(s) = U v(s′) ⇔ sv = s′
v , the set of policies that beat the status quo, A(s), only depends on sv . By 

consistency of proposal strategies, this implies that xa(s) depends only on sv for any status quo s ∈ � and any agenda setter 
a ∈ {1, 2}. In turn, this implies that also V i(s) depends only on sv for any i ∈ {v, 1, 2} for any status quo s ∈ �. �

Lemma 10. In any continuous and consistent MPE of the dynamic bargaining game where pv = 0 and min{p1, p2} > 0, equilibrium 
proposals are MWC, that is, the proposer offers exactly 0 to the other non-veto player.

Proof. For any status quo s ∈ �, the equilibrium proposal of proposer a ∈ {1, 2} solves maxz∈A(s) za + δVa(z). Denote the 
proposing non-veto player with a ∈ {1, 2} and the non-proposing veto player with −a = {1, 2} \ {a}. Assume, towards a 
contradiction, that x = xa(s) is such that x−a > 0 and consider an alternative proposal y such that yv = xv , ya = xa +x−a > xa

and y−a = 0. If x ∈ A(s), then also y ∈ A(s). This is because the set of policies that beat the status quo, A(s) = {z ∈ �|U v(z) ≥
U v(s)} depend only on zv and sv . Moreover, since Va(z) only depend on zv , we have Va(x) = Va(y). This means that the 
dynamic payoff the proposer derives from y is strictly larger than the dynamic payoff the proposer derives from x. Since 
they both belong to the set of acceptable policies, it cannot be the case that x solves maxz∈A(s) za + δVa(z). �

Lemma 11. Consider a continuous and consistent MPE of the dynamic bargaining game where pv = 0 and min{p1, p2} > 0. Denote 
with xa(s) the equilibrium proposal of a = {1, 2} under status quo s ∈ �. If x = xa(s) is such that xv > sv for some a ∈ {1, 2} and some 
s ∈ �, then, ∀s′ ∈ � such that s′

v ∈ [sv , xv ], xa(s′) = xa(s).

Proof. Assume that x = xa(s) is such that xv > sv for some a ∈ {1, 2} and s ∈ � and fix s′ ∈ � such that s′
v ∈ [sv , xv ]. 

Since xv ≥ s′
v and U v (s) is strictly increasing in sv , we have xa(s) ∈ A(s′). Moreover, s′

v ≥ sv implies A(s′) ⊆ A(s) and hence 
xa(s′) ∈ A(s). Thus, by consistency, xa(s′) = xa(s). �

Lemma 12. Consider a continuous and consistent MPE of the dynamic bargaining game where pv = 0 and min{p1, p2} > 0. Denote 
with xa(s) the equilibrium proposal of non-veto player a = {1, 2} under status quo s ∈ �, and with x−a(s) the equilibrium proposal 
of the other non-veto player under the same status quo. If y = xa(s) is such that yv > sv for some a ∈ {1, 2} and some s ∈ �, then, 
x = x−a(s) is such that xv = sv .

Proof. Assume, towards a contradiction, that, for some a ∈ {1, 2} and s ∈ �, y = xa(s) is such that yv > sv and x = x−a(s)
is such that xv > sv (Note that, because non-veto proposers cannot pass a proposal decreasing the allocation to the veto 
player for any status quo, this suffices.) Without loss of generality, assume that xv < yv . By Lemma 11, ∀s′ ∈ � such 
that s′

v ∈ [sv , xv ], xa(s′) = xa(s) and x−a(s′) = x−a(s). This means that ∀s′ ∈ � such that s′
v ∈ [sv , xv ], V−a(s′) is constant. 

Consider x′ ∈ � such that x′
v ∈ [sv , xv) and x′−a = x−a + (xv − x′

v). Since xv − x′
v > 0 and V−a(x) = V−a(x′), we have: x′−a +

δV−a(x′) = x−a +(xv −x′
v ) +δV−a(x′) > x−a +δV−a(x). However, this is a contradiction since x−a +δV−a(x) = maxz∈A(s) z−a +

δV−a(z). �

Finally, we are in the position to argue that, ∀s ∈ � and ∀a ∈ {1, 2}, x = xa(s) is such that xv = sv . Since the veto player 
cannot propose, this shows that, in any period of a consistent and continuous MPE, the veto player gets s0

v . Notice that 
because U v (s) is strictly increasing in sv , to prove Proposition 11 it is sufficient to rule out xv > sv (as the veto player never 
accepts a reduction to this allocation). Suppose, towards a contradiction, that for some a ∈ {1, 2} and some s ∈ �, we have 
x = xa(s) such that xv > sv .

We can assume, without loss of generality, that sv = 1 − sa . (To see why this is without loss of generality, note that, if 
there is s ∈ � such that xv > sv , then, since by consistency the equilibrium proposal depends on only on sv , there has to 
be s′ ∈ � with s′

v = sv and s′
a = 1 − s′

v such that xa(s′) = xa(s).) By Lemma 10, we have x−a = 0 and, thus, xv = 1 − xa . 
Hence xv > sv implies xa < sa . Because a proposes x = xa(s) when the status quo is s, we have xa + δVa(x) ≥ sa + δVa(s)
and because xa < sa , we must have Va(x) > Va(s).

We now argue that, ∀s′ ∈ � such that s′
v ∈ [sv , xv), Va(s′) is constant in s′ . Remember that we denote x = xa(s). Let 

x′ = xa(s′) and y′ = x−a(s′). Since xv > sv , by Lemma 11 we have that ∀s′ ∈ � such that s′
v ∈ [sv , xv), x′ = x. Thus, ∀s′ ∈ �
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such that s′
v ∈ [sv , xv), x′

v = xv > s′
v and, by Lemma 12, y′

v = s′
v . Because, by Lemma 10 y′

a = 0 ∀s′ ∈ � and because, by 
Lemma 9 Va(s′) depends only on s′

v , we can express as follows Va(s′) ∀s′ ∈ � such that s′
v ∈ [sv , xv):

Va(s′) = pa
[
x′

a + δVa(x′)
] + p−a

[
y′

a + δVa(y′)
]

= pa [xa + δVa(x)] + p−a
[
0 + δVa(s′)

]
= pa

1−δp−a
[xa + δVa(x)] .

(15)

Now consider a sequence (sn)∞n=1 defined by sn
v = 1

n sv + n−1
n xv and sn

a = 1 − sn
v . Because, ∀s′ ∈ � such that s′

v ∈ [sv , xv ), 
Va(s′) is constant in s′

v , Va(sn) = Va(s) ∀n ∈ N . Hence limn→∞ Va(sn) = Va(s) < Va(x). Thus Va is not continuous at xv , a 
contradiction.

Appendix D. Committee size and majority requirement

In this Appendix, I study committees with n legislators, k ≤ n veto players and m = n − k non-veto players (with m

even). A proposal defeats the status quo if it receives the concurring support of the k veto players and q ∈
[

0, 2
3 m

]
non-veto 

players. This includes a wide array of voting rules, from oligarchies where the coalition of all veto players can change the 
status quo without the approval of any non-veto player (q = 0), to qualified majorities where the status quo is defeated only 
with the approval of more than 50% of legislators (k + q > n/2). This more general setup allows me to investigate whether 
expanding the committee or changing the majority requirement can reduce the leverage of the veto player(s) and promote 
more equitable outcomes.

In order to preserve the analytical tractability of the model, I introduce two assumptions. First, having explored the 
impact of recognition probabilities in smaller committees, I assume that only veto players are able to make proposals and 
that each veto player proposes with the same probability. Second, I restrict the set of feasible allocations to those with, at 
most, two types of non-veto players: a subset who receives zero and a subset who receives the same, non-negative amount. 
In particular, a feasible allocation is summarized by s = {sv1, sv2, . . . , svk, m, sm}, where svi , i = {1, 2, . . . , k}, denotes the 
share to veto player i, m denotes the number of poor non-veto players (whose share is sm = 0), and sm ≥ 0 denotes the 
share to each of the (m − m) rich non-veto players.26 I denote with snv = (m − m)sm the total share of resources allocated 
to non-veto players in allocation s.

The presence of multiple veto players or qualified majorities do not prevent the complete expropriation of the resources 
initially allocated to non-veto players. Proposition 12 shows that this dynamic game has an MPE in which the k veto players 
extract all the surplus in finite time.

Proposition 12. Consider the game with n legislators, k veto players, and q non-veto players needed for passage. For any n ≥ 3, any 
k ≤ n, any q ∈

[
0,

2(n−k)
3

]
, any δ ∈ [0, 1), and any s0 ∈ �, there exists an MPE such that the committee transitions to an absorbing 

state where the k veto players get the whole pie in at most three periods.27

Complete appropriation by veto players is possible because a veto proposer can always pass an allocation that increases 
his allocation. The committee converges to this outcome in finite time because poor non-veto players do not demand 
a premium and support any allocation of resources. This means that the veto player can expropriate non-veto players 
completely as soon as the status quo gives zero to at least q non-veto legislators.

At the same time, non-veto players might enjoy positive resources in the initial periods and larger majority requirements 
reduce the speed of convergence to the absorbing state where non-veto players hold nothing. This is because rich non-veto 
players do demand a premium to support an allocation which increases the allocation to veto players, and this premium 
is increasing in the discount factor and in the fraction of the resources to non-veto players. The cumulative demand of 
the (q − m) rich non-veto players needed for a minimal winning coalition is less than the cumulative amount to non-veto 
players in the status quo. Thus, the proposing veto player can increase his allocation and increase the number of poor non-
veto players in the future status quo.28 However, with a larger q or a lower m, it takes more periods to have at least q poor 
non-veto players and for veto players to appropriate all resources.

Moreover, the presence of other legislators with veto power reduces the amount a single legislator can extract. A non-
proposing veto player asks more than what he receives in the status quo to support the expropriation of non-veto players. 
He demands this premium because a higher current allocation to another veto player decreases the amount he is able to 
extract when he proposes in the future. In particular, when the non-veto players are completely expropriated, the policy 

26 This assumption does not restrict the number of legislators who receive a positive allocation and it allows proposers to give different amounts to 
different legislators. The role of this assumption is to simplify the identification of the cheapest coalition: the proposer randomizes among coalition partners 
with the same status quo allocation but does not need to employ a different mixing probability for each feasible allocation.
27 For the case where veto players are decisive (q = 0), Proposition 14 in the proof of Proposition 12 below proves an analogous result for the more 

general setup where pv ∈ (0, 1] and all vectors of non-negative transfers which sum to 1 are feasible agreements.
28 This is because mt+1 = m − (q − mt ) = mt + (m − q) > mt .
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moves to a gridlock region where no future proposer will be able to pass a policy he prefers to the status quo. In order 
to offset this loss and gain their vote, the proposing veto player has to share part of the amount he expropriates from 
the non-veto players with the other k − 1 veto players. Nonetheless, the proposing veto player gets a greater share of the 
resources expropriated from the non-veto players for any δ ∈ [0, 1).

Proposition 13 summarizes this discussion.

Proposition 13. In the MPE from Proposition 12: (a) the number of periods with positive resources to non-veto players is weakly 
increasing in q; (b) the cumulative value of the game for non-veto players is weakly increasing in δ, q and s0

nv , and weakly decreasing 
in m; (c) the share to each veto player in the absorbing state is strictly larger than his starting share, unless s0 is an absorbing state 
(that is, s0

nv = 0) or δ = 0.

D.1. Proof of Proposition 12

Veto Players are Decisive: q = 0
When the coalition of veto players is decisive (that is, q = 0) we can consider a more general setup where we relax the two 
assumptions employed in this Section: each veto player proposes with chance pv

k , where pv ∈ (0, 1]; each non-veto player 
proposes with chance 1−pv

n−k ; and the space of possible agreements is composed of all vectors of non-negative transfers to 
the n legislators which sum to 1. We can prove the following result:

Proposition 14. Consider the game with n legislators and k decisive veto players. For any n ≥ 3, any k ≤ n, any pv ∈ (0, 1], any 
δ ∈ [0, 1), and any s0 ∈ �, there exists an MPE such that the committee transitions to an absorbing state where the k veto players get 
the whole pie as soon as one veto player proposes. In the absorbing state, the share to each veto player is strictly larger than his starting 
share, unless s0 is an absorbing state or δ = 0.

The result of Proposition 12 for q = 0 is a special case of the more general result in Proposition 14 above, for the case 
where pv = 1. Below, we prove Proposition 14.

In this game an allocation is s = [sv1, sv2, . . . , svk, s1, s2, . . . , sn−k], where svi , i = 1, 2, . . . , k, denotes the share to a veto 
player and si , i = 1, 2, . . . , (n −k) denotes the share to a non-veto player. The unique minimal winning coalition is composed 
of all veto players. The result of Proposition 14 follows from the existence of a symmetric MPE where veto players propose 
a positive allocation to the members of the minimal winning coalition and non-veto players propose a positive allocation to 
these members and to themselves. In particular, consider the following proposal strategies for all status quo policies s ∈ �:

• When the proposer is veto player vi, she offers dv
v j (s) = sv j + δpv

k(1−δ+pv δ)

∑n−k
i=1 si to each of the other (k − 1) veto 

players, 0 to all non-veto players, and 1 − ∑
j 
=i dv

v j (s) = svi +
(

1 − (k−1)δpv
k(1−δ+pv δ)

)∑n−k
i=1 si to herself.

• When the proposer is non-veto player i, he offers dnv
vi = svi , i = 1, 2, . . . , k, to the k veto players, 0 to all other non-veto 

players, and 1 − ∑
i svi = ∑n−k

i=1 si to herself.

If these proposals pass, allocations which do not give anything to any non-veto players are absorbing states and one of 
these allocations is reached as soon as one veto player proposes. Remember that a veto player is selected to propose with 
probability pv/k and a non-veto player with probability (1 − pv)/(n −k). Therefore, if legislators play the proposal strategies 
above and these proposals pass, legislators’ continuation values for allocation s ∈ � are as follows:

v vi(s) = (1 − pv) [sv1 + δv v1(s)] + pv

k

[
1 − ∑

j 
=i dv
v j (s)

1 − δ

]
+ pv(k − 1)

k

[
dv

v1

1 − δ

]

= svi

(1 − δ)
+ pv

∑n−k
i=1 si

(1 − δ)k(1 − δ + pvδ)

vi(s) = 1 − pv

n − k

[
n−k∑
i=1

si + δvi(s)

]
=

(1 − pv)
(∑n−k

i=1 si

)
(n − k) − δ(1 − pv)

On the basis of these continuation values, we obtain veto players’ expected utility functions, U vi(x) = xvi + δv vi(x). The 
reported demands for veto players as a function of the proposer’s type are in accordance with Definition 2. In particular, dv

vi
and dnv

vi , i = 1, 2, . . . , k, can be easily derived from the following equations:

svi + δv vi

(
svi,

n−k∑
si

)
= dv

vi

1 − δ

i=1

217



S. Nunnari Games and Economic Behavior 126 (2021) 186–230
svi + δv vi

(
svi,

n−k∑
i=1

si

)
= dnv

vi + δv vi

(
dnv

vi ,

n−k∑
i=1

si

)

By the definition of demands, supporting the proposals outlined above is an equilibrium voting strategy. Finally, we need to 
prove that those proposal strategies are optimal, given the continuation values. First, note that the expected utility a veto 
player derives from a policy x is an increasing and linear function of what x assigns to her and of what x assigns to all 
non-veto players. Second, since p

k(1−δ+pv δ)
∈ [pv/k, 1/k] is always smaller than 1, the optimal proposal for player vi is the 

one that maximizes xvi , subject to being approved, that is, subject to giving the other veto players at least dv
v j . The unique 

proposal that maximizes this objective function subject to this constraint is the one that gives exactly dv
v j to the other veto 

player, 0 to the non-veto players, and the remainder to the proposer.

Veto Players are not Decisive: q ∈
(

0, 2
3 m

]
In this case, a proposal passes if it receives the support of the k veto players, plus at least q ∈

[
1, 2

3 m
]

non-veto legislators. 
Remember that we denote with snv = (m − m)sm the total share of resources allocated to non-veto players in allocation s. 
The results of Proposition 12 follow from the existence of a symmetric MPE with the following minimal winning coalition 
proposal strategies for all feasible allocations:

• Case A m ≥ q:
– The proposing veto player offers dA

vi = svi + δ
k snv to the other (k − 1) veto players, the remainder to himself, and 0 

to everybody else. The proposal passes with the support of the veto players and the poor non-veto players, (who are 
indifferent between the status quo and the proposal because dA

m = 0). At the beginning of the following period, the 
status quo allocation is such that m = m > q. This means that the new status quo belongs to case A.

• Case B q > m ≥ 2q − m:
– The proposing veto player offers dB

v = svi + δ
k

(m−m)−2(q−m)

(m−m)−δ(q−m)
snv to the other (k − 1) veto players, dB

m = 1
(m−m)−δ(q−m)

snv

to (q − m) randomly chosen rich non-veto players, the remainder to himself, and 0 to everybody else. The proposal 
passes with the support of the veto players, the (q − m) rich veto players who are offered a positive amount and 
the poor non-veto players (who are indifferent between the status quo and the proposal because dB

m = 0). At the 
beginning of the following period, the status quo allocation st+1 is such that mt+1 = mt + (m − q). Since mt ≥ 2q − m, 
this means that mt+1 ≥ q, or that the new status quo belongs to case A.

• Case C m < 2q − m:

– The proposing veto player offers dC
v = svi + δ

k
(m−q)2(1−δ)2

[m−m−δ(q−m)]2 snv to the other (k − 1) veto players, dC
m =

(q−m)−δ(2q−m−m)

(q−m)[m−m−δ(q−m)] snv to (q − m) randomly chosen rich non-veto players, the reminder to himself, and 0 to every-
body else. The proposal passes with the support of the veto players, the (q − m) rich veto players who are offered a 
positive amount and the poor non-veto players (who are indifferent between the status quo and the proposal because 
dC

m = 0). At the beginning of the following period, the status quo allocation st+1 is such that mt+1 = mt + (m − q). 
Since mt < 2q − m, we have mt+1 < q. Moreover, since q < 2

3 m, we have mt+1 ≥ 2q − m. This means that the new 
status quo belongs to case B.

If players play the proposal strategies in cases A-C and these proposals pass, their continuation values are as follows:

• Case A

v vi(s) = svi

1 − δ
+ snv

(1 − δ)k
vm(s) = 0

vm(s) = 0

• Case B

v vi(s) = svi

1 − δ
+ (m − q)

(1 − δ)k[m − m − δ(q − m)] snv

vm(s) = 0

vm(s) = (q − m)

(m − m)

snv

(m − m) − δ(q − m)

• Case C

v vi(s) = svi + (m − q)[(1 − δ)(m − m) + δ2(m − q)]
2

snv

1 − δ (1 − δ)k[m − m − δ(q − m)]
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vm(s) = 0

vm(s) = (q − m)

(m − m)

snv

(m − m) − δ(q − m)

On the basis of these continuation values, we obtain players’ expected utility functions, U vi(x) = xvi + δv vi(x), Um(x) =
0 + δvm(x), and Um(x) = xm + δvm(x). The reported demands are in accordance with Definition 2. In particular, dA

vi , d
B
vi , d

C
vi , 

i = 1, 2, . . . , k, dA
m , dB

m , dC
m , dB

m , and dC
m can be derived from the following indifference conditions:

svi + δv A
vi (svi, snv) = dA

vi

1 − δ

svi + δv B
vi (svi, snv) = dB

vi + δv A
vi

(
dB

vi, (q − m)dB
m

)
svi + δvC

vi (svi, snv) = dC
vi + δv B

vi

(
dC

vi, (q − m)dC
m

)
0 + δv A

m = dA
m + δv A

m

0 + δv B
m = dB

m + δv A
m

0 + δvC
m = dC

m + δv B
m

sm + δv B
m

(
snv ,m

) = dB
m + δv A

m

sm + δvC
m

(
snv ,m

) = dC
m + δv B

m

(
(q − m)dC

m,m + (m − q)
)

By the definition of demands, supporting the proposals outlined above is an equilibrium voting strategy. Finally, we need 
to prove that those proposal strategies are optimal, given the continuation values. In case A, U vi(x) is a linear and positive 
function of both xvi and xnv . Since 1

1−δ
≥ δ

k(1−δ)
for any k ≥ 1, and δ ∈ [0, 1], U vi(x) is maximized when xvi is as large as 

possible. Similarly, in cases B and C, U vi(x) is a linear and positive function of both xvi and xnv . Since the coefficient of xvi , 
1

1−δ
, is greater than or equal to the coefficient of xnv for any k ≥ 1, δ ∈ [0, 1], m ≥ 1, m ≤ m, and q < m, U vi(x) is maximized 

when xvi is as large as possible. This means that the expected utility of the proposing veto player is maximized when xvi is 
as large as possible. The proposal strategies above are the acceptable proposals which give the largest possible share to the 
proposer (because they make the agents of a minimal winning coalition barely indifferent between accepting and rejecting).

D.2. Proof of Proposition 13

This result in part (a) follows from the equilibrium demand of poor non-veto players which demand zero to support any 
allocation. This means that, when the status quo is such that m > q, the proposing veto player can expropriate the non-veto 
players completely with the support of the poor non-veto players and the other veto players. When in the initial status quo 
m0 < q, the proposer cannot extract completely the rich non-veto players because he needs the support of (q − m0) rich 
non-veto players who demand a positive allocation. However, the number of cheap coalition partners at the beginning of 
the second period will be larger: m1 = m − (q − m0) = m0 + (m − q) > m0, which holds ∀q < m. When q > m0 ≥ 2q − m, we 
have m1 > q. In this case, in the second period the proposer does not need the support of any rich non-veto player and we 
converge to the absorbing state where non-veto players have zero resources. When m0 < 2q − m, we have m1 < q so, in the 
second period, the proposer needs to muster the costly support of (q − m1) rich non-veto players. However, since q < 2

3 m, 
we have m2 ≥ q: in the third period the proposer does not need the support of any rich non-veto player and we converge 
to the absorbing state where non-veto players have zero resources.

The result in part (b) follows from investigating the sum of all non-veto players’ value functions evaluated at the initial 
status quo, s0. Since the value of any initial allocation to poor non-veto players is 0 and the value to each non-veto player 
is the same, this sum is given by (m − m)vm(s0) or by:

∑
i∈nv

vi(s0) = (m − m)vm(s0) =
{

0, if q < m0

q−m0

m−m0−δ(q−m0)
s0

nv , if q > m0

When q < m0, this value is constant. When q > m0, this value is increasing in q, δ and s0
nv and decreasing in m.

The result in part (c) follows from the equilibrium demand of veto players: δ
k and δ

k
(m−q)2(1−δ)2

[m−m−δ(q−m)]2 are strictly positive 

for any k ≥ 1, δ ∈ (0, 1), and q < m; δ
k

(m−m)−2(q−m)

(m−m)−δ(q−m)
(the demand in case B) is strictly positive for any δ ∈ (0, 1), q < m, and 

m < q (which is true in case B). This means that each veto player gets a positive fraction of the resources expropriated from 
non-veto players regardless of the identity of the proposer.
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Appendix E. MPEs where positive allocations to non-veto players are stable

Proposition 15. Consider any x ∈ � such that (a) min{xv , x1, x2} > 0, (b) x2 + δ(x1−x2)
2 > x(δ) = (3−2δ)2

(3−δ)2 and (c) x1 + x2 > x(δ) =
54−72δ+18δ2+4δ3

(3−δ)(18−15δ+δ2)
. There exists an MPE of the legislative bargaining game where Y = {(xv , x1, x2), (xv , x2, x1)} is an irreducible absorb-

ing set.

In the proof of Proposition 15, I construct a class of MPEs where an allocation (or a pair of allocations) giving a positive 
amount to all players is stable. In particular, I show that, for each set Y satisfying the sufficient conditions in the statement 
of Proposition 15, there exists an MPE of the legislative bargaining game such that (a) if s0 ∈ Y , the policy is never changed 
(if x1 = x2 and, thus, |Y | = 1) or alternates forever between allocations in Y (if x1 
= x2 and, thus |Y | = 2); and (b) if s0 /∈ Y , 
the policy converges asymptotically to full extraction by the veto player as in the MPE from Proposition 1. Notice that the 
set of allocations satisfying the sufficient conditions in the statement of Proposition 15 is non-empty for any δ > 0.68 and 
grows with δ.

Corollary 2. Consider any x ∈ � such that (a) min{xv , x1, x2} > 0, (b) x1 = x2 = xnv , (c) xnv >
(3−2δ)2

(3−δ)2 and (d) xnv >

27−36δ+9δ2+2δ3

(3−δ)(18−15δ+δ2)
. There exists an MPE of the legislative bargaining game where x is absorbing. In particular, as δ goes to 1, for any 

x ∈ � such that xnv > 1/4, there exists an MPE of the legislative bargaining game where x is absorbing.

Example 1. Assume δ = 0.75. In this case, x(δ) = 0.44 and x(δ) = 0.72. Note that x2 + 3(x1−x2)
8 > 0.44 implies x1 + x2 >

0.72 as long as x1 ≥ 1/25. Since neither inequality is satisfied when x1 < 1/25, there exists an MPE where Y =
{(xv , x1, x2), (xv , x2, x1} is an irreducible absorbing set for any x ∈ � such that min{xv , x1, x2} > 0 and 5

8 x2 + 3
8 x1 > 0.44.

Example 2. Assume δ = 0.95. In this case, x(δ) = 0.29, and x(δ) = 0.55. Note that x2 + 95(x1−x2)
200 > 0.29 implies x1 +

x2 > 0.55 as long as x1 ≥ 1/8. Since neither inequality is satisfied when x1 < 1/8, there exists an MPE where Y =
{(xv , x1, x2), (xv , x2, x1} is an irreducible absorbing set for any x ∈ � such that min{xv , x1, x2} > 0 and 21

40 x2 + 19
40 x1 > 0.29.

Example 3. Assume δ = 0.99. In this case, x(δ) = 0.26, and x(δ) = 0.51. Note that x2 + 99(x1−x2)
200 > 0.26 implies x1 + x2 >

0.51 Then, there exists an MPE where Y = {(xv , x1, x2), (xv , x2, x1} is an irreducible absorbing set for any x ∈ � such that 
min{xv , x1, x2} > 0 and 101

200 x2 + 99
200 x1 > 0.26.

Proof. Assume s1 ≥ s2 (without loss of generality) and consider the following strategies: (a) if s ∈ Y = {(sv , s1,

s2), (sv , s2, s1)}, then a veto proposer offers either allocation in Y with the same chance; non-veto proposer 1 offers 
(sv , s1, s2); non-veto proposer 2 offers (sv , s2, s1); (b) if x /∈ Y , players follow the proposing and voting strategies from 
the MPE characterized in the proof of Proposition 1.

This is the strategy of the proof. First we want to show that when the policy is in Y , it does not move out of this set. 
Second, we want to show that when the policy is not in Y , policy does not move in this set. To prove the first statement, I 
show that, given the strategies described above and the associated value functions, there is no allocation outside Y which 
the veto player and at least one non-veto player prefer to a status quo is in Y . In particular, I derive the minimum amount 
a non-veto player needs to be offered in order to support a proposal outside of Y (and label it d


2); then, I derive the 
minimum amount a veto player needs to be offered in order to support a proposal outside of Y (and label it d


v ); finally, 
I show that, when the assumptions in the statement of Proposition 15 are satisfied, there is no feasible allocation outside 
Y which both the veto player and one non-veto player are willing to support (that is, d


2 + d

v > 1). To prove the second 

statement, I show that, when the policy is not in Y the veto player is better off vetoing any attempt to bring the policy 
in Y .

Consider an allocation s = (sv , s1, s2) /∈ Y . Given the conjectured equilibrium strategies, the evolution of policies follows 
the MPE from Proposition 1 (with all future policies lying in � and asymptotic convergence to full extraction by the veto 
player). Thus, the continuation values and expected utilities are those from the proof of Proposition 1.

Consider an allocation s = (sv , s1, s2) ∈ Y .
Given the conjectured equilibrium strategies, expected utilities from s are:

U v(s) = sv

1 − δ

U1(s) = s1 + δ

[
s1 + s2

2(1 − δ)

]
= 2s1 − δ(s1 − s2)

2(1 − δ)

U2(s) = s2 + δ

[
s1 + s2

2(1 − δ)

]
= 2s2 + δ(s1 − s2)

2(1 − δ)
220



S. Nunnari Games and Economic Behavior 126 (2021) 186–230
Part 1: if st ∈ Y , then st+1 ∈ Y .
Consider status quo s ∈ Y . Since U1(s) ≥ U2(s), we can focus on the minimum amount required by non-veto player 2 to 

support a policy outside Y . Note that, given the conjectured equilibrium strategies, the continuation value of any allocation 
outside Y is the continuation value from the MPE in Proposition 1. These continuation values are such that expected utilities 
are strictly increasing in one’s own allocation for any δ ∈ [0, 1) so we can focus on allocations in �.

The amount that makes player 2 indifferent between s ∈ Y and an allocation x ∈ � (or player 2’s demand, using the 
definition introduced in the proof of Proposition 1) is the amount d2 such that:

2s2 + δ(s1 − s2)

2(1 − δ)
= d2 + δv A

2 (d)

2s2 + δ(s1 − s2)

2(1 − δ)
= d2 + δ

[
3 − 3δ + δ2

(3 − δ)2(1 − δ)

]
d2

d

2 = (2s2 + δ(s1 − s2))

(3 − δ)2

2(3 − 2δ)2

where v A
2 (d) is the continuation value of allocation d = (1 − d2, 0, d2) from the MPE in Proposition 1. Note that d


2(s1, s2, δ)
is strictly increasing in s1, s2, δ.

The amount that makes the veto player indifferent between s ∈ Y and an allocation x ∈ � (or the veto player’s demand) 
is the amount dv such that:

1 − s1 − s2

1 − δ
= dv + δv A

v (d)

1 − s1 − s2

1 − δ
= 1

1 − δ
− 2 − δ

(3 − δ)(1 − δ)
(1 − dv)

where v A
v (d) is the continuation value of allocation d = (dv , 0, 1 − dv ) from the MPE in Proposition 1. Since negative 

allocations are not feasible, we have:

d

v =

{
0 if s1 + s2 > 2−δ

3−δ
(1−s1−s2)(3−δ)−1

2−δ
if s1 + s2 ≤ 2−δ

3−δ

which is weakly decreasing in s1, s2, δ.
If d


2 + d

v > 1, then there is no feasible allocation outside Y which can count on the support of the veto player and at 

least one non-veto player. We have two cases to consider.

Case A: s1 + s2 > 2−δ
3−δ

∈
[

1
2 , 2

3

]
d


2 + d

v > 1

d

2 + 0 > 1

(2s2 + δ(s1 − s2))
(3 − δ)2

2(3 − 2δ)2
> 1

s2 + δ(s1 − s2)

2
>

(3 − 2δ)2

(3 − δ)2
= x(δ) (16)

For any δ ∈ [0, 1], the LHS is largest when s1 = s2 = 1/2. The RHS is continuous and strictly decreasing in δ; it goes to 1 
as δ goes to 0 and it goes to 1/4 as δ goes to 1. Thus, the inequality in equation (16) cannot be satisfied for any s ∈ � when 
δ < 9

7 − 3
√

2
7 ≈ 0.68.

Case B: s1 + s2 ≤ 2−δ
3−δ

∈
[

1
2 , 2

3

]
d


2 + d

v > 1

(2s2 + δ(s1 − s2))
(3 − δ)2

2(3 − 2δ)2
+ (1 − s1 − s2)(3 − δ) − 1

2 − δ
> 1

(
δ(3 − δ)2

2(3 − 2δ)2
− 3 − δ

2 − δ

)
s1 +

(
(2 − δ)(3 − δ)2

2(3 − 2δ)2
− 3 − δ

2 − δ

)
s2 > 0 (17)

The coefficients of s1 and s2 in the LHS are non-positive for any δ ∈ [0, 1]. Thus, the inequality can never be satisfied. This 
means that no MPE in the class constructed in this proof exists when s1 + s2 ≤ 2−δ or (regardless of δ) when s1 + s2 ≤ 1/2.
3−δ
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Part 2: if st /∈ Y , then st+1 /∈ Y .
Consider a status quo allocation s /∈ Y . A sufficient condition for policy to evolve according to the MPE in Proposition 1

and never moving in set Y is that the veto player blocks any attempt to move policy inside Y . From the continuation 
values in the proof of Proposition 1, we know that the s /∈ Y which gives the lowest expected utility to the veto player is 
(0, 1/2, 1/2). Thus, if the veto player prefers (0, 1/2, 1/2) to allocations in Y , then he prefers any allocation outside Y to 
allocations in Y . The veto player prefers (0, 1/2, 1/2) to either policy in Y when the following inequality is satisfied:

0 + δvC
v (0,1/2,1/2) >

1 − s1 − s2

1 − δ

9δ − 5δ3

(3 − δ)(18 − 15δ + δ2)
> 1 − s1 − s2

s1 + s2 > 1 − 9δ − 5δ3

(3 − δ)(18 − 15δ + δ2)
= 54 − 72δ + 18δ2 + 4δ3

(3 − δ)(18 − 15δ + δ2)
= x(δ) (18)

where vC
v (0, 1/2, 1/2) is the continuation value of allocation (0, 1/2, 1/2) from the MPE in Proposition 1. Notice that the 

RHS is strictly decreasing in δ and converges to 1/2 as δ goes to 1.
For any δ ∈ [0, 1], if equation (18) is satisfied, then s1 + s2 > 2−δ

3−δ
so equation (17) is irrelevant. The sufficient conditions 

in the statement of Proposition 15 are exactly equation (16) and equation (18).
For Corollary 2, note that when s1 = s2 = snv , equation (16) becomes:

snv >
(3 − 2δ)2

(3 − δ)2
(19)

Similarly, when x1 = x2 = xnv , equation (18) becomes

snv >
27 − 36δ + 9δ2 + 2δ3

(3 − δ)(18 − 15δ + δ2)
(20)

The RHS of equation (19) is strictly decreasing in δ and goes to 1/4 as δ goes to 1. The RHS of equation (20) is strictly 
decreasing in δ and goes to 1/4 as δ goes to 1. Thus, as δ goes to 1, any s ∈ � such that snv ∈ (1/4, 1/2) satisfies the 
sufficient conditions for MPE existence. �

Appendix F. MPEs where only full appropriation by veto player is stable in DES

F.1. Protocol with veto player as persistent proposer (pv = 1)

Consider the bargaining protocol where the veto player has monopolistic agenda setting power (pv = 1). Contrary to the 
setup in this paper and, in line with the assumptions of Diermeier, Egorov and Sonin (2017), here I assume that in each 
period, players bargain over the allocation of b indivisible objects, where b = 2. I show that, in spite of this difference, there 
is an MPE of the legislative bargaining game where full extraction by the veto player is the only stable allocation for any 
δ ∈ [0, 1]. In the analysis by Diermeier, Egorov and Sonin (2017), this equilibrium is refined away by the assumption that the 
bargaining protocol is randomly selected from a set of potential protocols at the beginning of each round and by the focus 
on equilibria which do not depend on the protocol selected. Using the language from Diermeier, Egorov and Sonin (2017), 
here I assume that there is only one feasible bargaining protocol, where the only proposer in each period is the veto player.

Consider the following strategies: when s = (0, 1, 1), the veto player proposes (0,0,2) or (0,2,0) with equal chance and 
this proposal is supported by the non-veto player who is offered a positive amount; when s 
= (0, 1, 1), the veto player 
proposes (2,0,0) and the proposal is supported by the non-veto player who has 0 in the status quo. In this MPE, the only 
irreducible absorbing set is {(2, 0, 0)}, that is, full expropriation by the veto player, which is reached in, at most, two periods.

The continuation values are as follows:

V i(2,0,0) = V i(1,0,1) = V i(1,1,0) = V i(0,2,0) = V i(0,0,2) = 0

for i = {1, 2}.

V 1(0,1,1) = 1

2
[2 + δV 1(0,2,0)] + 1

2
[0 + δV 1(0,0,2)] = 1

V 2(0,1,1) = 1

2
[2 + δV 1(0,0,2)] + 1

2
[0 + δV 1(0,2,0)] = 1

Non-veto player 1 accepts proposal (0,2,0) when the status quo is (0,1,1) if and only if:

2 + δV i(0,2,0) ≥ 1 + δV 1(0,1,1)

1 ≥ δ

Thus, this MPE exists for any δ ∈ [0, 1].
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F.2. Protocol with random selection of proposer (pv = 1
3 )

Consider the bargaining protocol where the proposer is randomly selected in each period (pv = 1/3). Contrary to the 
setup in this paper and, in line with the assumptions of Diermeier, Egorov and Sonin (2017), here I assume that 1) in each 
period, players bargain over the allocation of b indivisible objects, where b = 3; and 2) a reform which simply shuffles 
the allocations to non-veto players is costly and always rejected by the veto player, that is, it is impossible to move from 
allocation (sv , s1, s2) to allocation (sv , s2, s1). I show that, in spite of these differences, there is an MPE of the legislative 
bargaining game where full extraction by the veto player is the only stable allocation. In the analysis by Diermeier, Egorov 
and Sonin (2017), this equilibrium is refined away by the assumption that the bargaining protocol is randomly selected 
from a set of potential protocols at the beginning of each round and by the focus on equilibria which do not depend on the 
protocol selected. Using the language from Diermeier, Egorov and Sonin (2017), here I assume that there are three feasible 
bargaining protocols — one where the only proposer is the veto player, one where the only proposer is non-veto player 
1, and one were the only proposer is non-veto player 2 — and that each protocol is equally likely to be selected at the 
beginning of each round.

Below, I describe proposal and voting strategies for each feasible allocation and show that, together with the continuation 
values, these strategies constitute a symmetric MPE of the legislative bargaining game where (3,0,0) is the only absorbing 
outcome. Without loss of generality, I focus on the portion of the simplex where s1 ≥ s2 and consider the following proposal 
and voting strategies for status quo s = (sv , s1, s2):

• when s = (3, 0, 0): everybody proposes s; the veto player blocks any reform; non-veto players support any reform;
• when s = (2, 1, 0): the veto player and non-veto player 2 propose (3,0,0); non-veto player 1 proposes s; the veto player 

and non-veto player 1 support only reforms which increase one’s own allocations; non-veto player 2 supports any 
reform;

• when s = (1, 2, 0): the veto player and non-veto player 2 propose (2,0,1); non-veto player 1 proposes s; everybody 
supports only reforms which increase one’s own allocation;

• when s = (1, 1, 1) and δ < 0.908: the veto player proposes (1,2,0) and (1,0,2) with equal chance; non-veto player 1 
proposes (1,2,0); non-veto player 2 proposes (1,0,2); the veto player supports any reform which gives him at least 1; 
non-veto players support only reforms which increase one’s own allocation;

• when s = (1, 1, 1) and δ ≥ 0.908: the veto player proposes (0,3,0) and (0,0,3) with equal chance; non-veto player 1 
proposes (0,3,0); non-veto player 2 proposes (0,0,3); the veto player supports any reform; non-veto players support 
only reforms which give them everything;

• when s = (0, 3, 0): the veto player and non-veto player 2 propose (1,0,2); non-veto player 1 proposes s; everybody 
supports only reforms which increase one’s own allocation;

• when s = (0, 2, 1): the veto player proposes (0,3,0) with probability (1 − μ) and (0,0,3) with probability μ; non-veto 
player 1 proposes (0,3,0); non-veto player 2 proposes (0,0,3); the veto player supports any reform; non-veto players 
only support reforms which increase one’s own allocation; μ = 1 if δ ≤ 0.5787 and μ = 27−21δ2+10δ3

2δ(7δ2−18δ+27)
∈ [1/2, 1] if 

δ > 0.5787.

Given these strategies, the continuation values of the non-veto players are:

V 1(3,0,0) = V 2(3,0,0) = 0

V 1(1,2,0) = V 2(1,0,2) = 1

3
[2 + δV 1(1,2,0)] + 2

3
[0 + δV 1(2,0,1)] = 2

3 − δ

V 1(1,0,2) = V 2(1,2,0) = 1

3
[0 + δV 1(1,0,2)] + 2

3
[1 + δV 1(2,1,0)] = 6

(3 − δ)2

V 1(2,1,0) = V 2(2,0,1) = 1

3
[1 + δV 1(2,1,0)] + 2

3
[0] = 1

3 − δ

V 1(2,0,1) = V 2(2,1,0) = 0

V 1(0,3,0) = V 2(0,0,3) = 1

3
[3 + δV 1(0,3,0)] + 2

3
[0 + δV 1(1,0,2)] = 27 − 6δ + 3δ2

(3 − δ)3

V 1(0,0,3) = V 2(0,3,0) = 1

3
[0 + δV 1(0,0,3)] + 2

3
[2 + δV 1(1,2,0)] = 12

(3 − δ)2

V 1(0,2,1) = V 2(0,1,2) = 2 − μ

3
(3 + δV 1(0,3,0)) + 1 + μ

3
(0 + δV 1(0,0,3))

V 1(0,1,2) = V 2(0,2,1) = 1 + μ
(3 + δV 1(0,3,0)) + 2 − μ

(0 + δV 1(0,0,3))

3 3
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V 1(1,1,1) = V 2(1,1,1) =
{ 1

2 [2 + δV 1(1,2,0)] + 1
2 [0 + δV 1(1,0,2)] = 9

(3−δ)2 if δ < 0.908
1
2 [3 + δV 1(0,3,0)] + 1

2 [0 + δV 1(0,0,3)] = 9(9−2δ+δ2)

2(3−δ)3 if δ ≥ 0.908

The continuation values of the veto player are:

V v(3,0,0) = 3

1 − δ

V v(1,2,0) = V v(1,0,2) = 1

3
[1 + δV v(1,2,0)] + 2

3
[2 + δV v(2,1,0)] = 15 − 4δ + δ2

(1 − δ)(3 − δ)2

V v(2,1,0) = V v(2,0,1) = 1

3
[2 + δV v(2,1,0)] + 2

3
[3 + δV v(3,0,0)] = 8 − 2δ

(1 − δ)(3 − δ)

V v(0,3,0) = V v(0,0,3) = 1

3
[0 + δV v(0,3,0)] + 2

3
[1 + δV v(1,2,0)] = 18 + 6δ

(1 − δ)(3 − δ)2

V v(1,1,1) =
⎧⎨
⎩1 + δV v(1,2,0) = 3(3+δ2)

(1−δ)(3−δ)2 if δ < 0.908

0 + δV v(0,3,0) = 18δ+6δ2

(1−δ)(3−δ)2 if δ ≥ 0.908

It is straightforward to show that, given these continuation values, the proposing and voting strategies above are optimal 
for status quo policies where exactly one non-veto players receives 0. The crucial steps are: A) proving that the veto player 
prefers state (1,2,0) to state (0,3,0) when both are in the acceptance set of non-veto player 1 (or, equivalently, that the veto 
player prefers state (1,0,2) to state (0,0,3) when both are in the acceptance set of non-veto player 2); B) proving that non-
veto player 1 supports proposal (1,2,0) when the status quo is (1,1,1) if and only if δ < 0.908 (or, equivalently, that non-veto 
player 2 supports proposal (1,0,2) when the status quo is (1,1,1) if and only if δ < 0.908); C) proving that both non-veto 
player 1 and the veto player support proposal (1,2,0) when the status quo is (1,1,1) and δ < 0.908 (or equivalently that both 
non-veto player 2 and the veto player support proposal (1,0,2) when the status quo is (1,1,1) and δ < 0.908); D) proving 
that both non-veto player 1 and the veto player support proposal (0,3,0) when the status quo is (1,1,1) and δ ≥ 0.908 (or, 
equivalently, that both non-veto player 2 and the veto player support proposal (0,0,3) when the status quo is (1,1,1) and 
δ ≥ 0.908); E) proving that non-veto player 1 supports proposal (0,3,0) when the status quo is (0,2,1) (or, equivalently, that 
non-veto player 2 supports proposal (0,0,3) when the status quo is (0,1,2)); F) proving that non-veto player 1 supports 
proposal (0,3,0) when the status quo is (0,1,2) (or, equivalently, that non-veto player 2 supports proposal (0,0,3) when the 
status quo is (0,2,1)).

Step A The veto player prefers state (0,3,0) to state (1,2,0) if:

δV v(0,3,0) > 1 + δV v(1,2,0)

δ

(
18 + 6δ

(1 − δ)(3 − δ)2

)
> 1 + δ

(
15 − 4δ + δ2

(1 − δ)(3 − δ)2

)
3δ(6 + δ) − 9

(1 − δ)(3 − δ)2
> 0

which holds for any δ > 0.464. In other words, when the status quo is (1,1,1) and δ ≥ 0.908 so non-veto player 1 is willing 
to support both (0,3,0) and (1,2,0), the veto player prefers to bring the status quo to (0,3,0).

Step B Player 1 supports (1,2,0) when the status quo is (1,1,1) if and only if

1 + δV 1(1,1,1) ≤ 2 + δV 1(1,2,0)

1 + 9δ

(3 − δ)2
≤ 2 + 2δ

3 − δ

δ ≤ 9

9 + δ

which is satisfied for any δ < 0.908.

Step C Step A shows that player 1 supports (1,2,0) when the status quo is (1,1,1) and δ < 0.908. When the status quo is 
(1,1,1) and δ < 0.908, the veto player supports (1,2,0) if and only if:

1 + δV v(1,2,0) ≥ 1 + δV 1(1,1,1)

V v(1,2,0) ≥ V 1(1,1,1)
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15 − 4δ + δ2

(1 − δ)(3 − δ)2
≥ 3(3 + δ2)

(1 − δ)(3 − δ)2

15 − 4δ + δ2

3(3 + δ2)
≥ 1

which is satisfied for any δ < 0.908.

Step D Non-veto player 1 supports proposal (0,3,0) when the status quo is (1,1,1) if and only if:

3 + δV 1(0,3,0) ≥ 1 + δV 1(1,1,1)

3 + δ

(
27 − 6δ + 3δ2

(3 − δ)3

)
≥ 1 + δ

(
9(9 − 2δ + δ2)

2(3 − δ)3

)

which is true for any δ ∈ [0, 1].
The veto player supports proposal (0,3,0) over the status quo (1,1,1) if and only if:

0 + δV v(0,3,0) ≥ 1 + δV v(1,1,1)

0 + δV v(0,3,0) ≥ 1 + δ[0 + δV v(0,3,0)]
V v(0,3,0) ≥ 1

δ(1 − δ)

18 + 6δ

(1 − δ)(3 − δ)2
≥ 1

δ(1 − δ)

which is true for any δ ∈ (0.642, 1].

Step E When δ ≤ 0.587, μ = 1 and we have:

V 1(0,2,1) = 1

3
(3 + δV 1(0,3,0)) + 2

3
(0 + δV 1(0,0,3))

Player 1 supports proposal (0,3,0) when the state is (0,2,1) if and only if:

3 + δV 1(0,3,0) ≥ 2 + δV 1(0,2,1)

3 + δV 1(0,3,0) ≥ 2 + δ

[
1

3
(3 + δV 1(0,3,0)) + 2

3
(0 + δV 1(0,0,3))

]

1 + δV 1(0,3,0) ≥ δ + δ2

3
V 1(0,3,0) + 2δ2

3
V 1(0,0,3)

1 − δ +
(

3δ − δ2

3

)
V 1(0,3,0) ≥ 2δ2

3
V 1(0,0,3)

1 − δ +
(

3δ − δ2

3

)(
27 − 6δ + 3δ2

(3 − δ)3

)
≥ 2δ2

3

(
12

(3 − δ)2

)

1 − δ +
(

3δ − δ2

3

)(
27 − 6δ + 3δ2

(3 − δ)3

)
− 2δ2

3

(
12

(3 − δ)2

)
≥ 0

which is satisfied for any δ ∈ [0, 1].
When δ > 0.587, μ = 27−21δ2+10δ3

2δ(7δ2−18δ+27)
and we have:

V 1(0,2,1) =
1 +

(
27−21δ2+10δ3

2δ(7δ2−18δ+27)

)
3

(3 + δV 1(0,3,0)) +
2 −

(
27−21δ2+10δ3

2δ(7δ2−18δ+27)

)
3

(0 + δV 1(0,0,3))

= 3

2

(8δ6 − 27δ5 + 85δ4 − 62δ3 + 18δ2 + 153δ + 81)

δ(7δ2 − 18δ + 27)(3 − δ)2

Player 1 supports proposal (0,3,0) when the state is (0,2,1) if and only if:
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3 + δV 1(0,3,0) ≥ 2 + δV 1(0,2,1)

3 + δ

(
27 − 6δ + 3δ2

(3 − δ)3

)
≥ 2 + δ

(
3

2

(8δ6 − 27δ5 + 85δ4 − 62δ3 + 18δ2 + 153δ + 81)

δ(7δ2 − 18δ + 27)(3 − δ)2

)

1 + δ

(
27 − 6δ + 3δ2

(3 − δ)3

)
− δ

(
3

2

(8δ6 − 27δ5 + 85δ4 − 62δ3 + 18δ2 + 153δ + 81)

δ(7δ2 − 18δ + 27)(3 − δ)2

)
≥ 0

which is satisfied for any δ ∈ [0, 1].

Step F When δ ≤ 0.587, μ = 1 and we have:

V 1(0,1,2) = 2

3
(3 + δV 1(0,3,0)) + 1

3
(0 + δV 1(0,0,3))

Player 1 supports proposal (0,3,0) when the state is (0,1,2) if and only if:

3 + δV 1(0,3,0) ≥ 1 + δV 1(0,1,2)

3 + δV 1(0,3,0) ≥ 1 + δ

[
2

3
(3 + δV 1(0,3,0)) + 1

3
(0 + δV 1(0,0,3))

]

2 + δV 1(0,3,0) ≥ 2δ + 2δ2

3
V 1(0,3,0) + δ2

3
V 1(0,0,3)

2 − 2δ +
(

3δ − 2δ2

3

)
V 1(0,3,0) ≥ δ2

3
V 1(0,0,3)

2 − 2δ +
(

3δ − 2δ2

3

)(
27 − 6δ + 3δ2

(3 − δ)3

)
≥ δ2

3

(
12

(3 − δ)2

)

2 − 2δ +
(

3δ − 2δ2

3

)(
27 − 6δ + 3δ2

(3 − δ)3

)
− δ2

3

(
12

(3 − δ)2

)
≥ 0

which is satisfied for any δ ∈ [0, 1].
When δ > 0.587, μ = 27−21δ2+10δ3

2δ(7δ2−18δ+27)
and we have:

V 1(0,1,2) =
2 −

(
27−21δ2+10δ3

2δ(7δ2−18δ+27)

)
3

(3 + δV 1(0,3,0)) +
1 +

(
27−21δ2+10δ3

2δ(7δ2−18δ+27)

)
3

(0 + δV 1(0,0,3))

= 3

2

(6δ6 − 23δ5 + 103δ4 − 118δ3 + 36δ2 + 333δ − 81)

(δ(7δ2 − 18δ + 27)(3 − δ)2

Player 1 supports proposal (0,3,0) when the state is (0,1,2) if and only if:

3 + δV 1(0,3,0) ≥ 1 + δV 1(0,1,2)

3 + δ

(
27 − 6δ + 3δ2

(3 − δ)3

)
≥ 1 + δ

(
3

2

(6δ6 − 23δ5 + 103δ4 − 118δ3 + 36δ2 + 333δ − 81)

(δ(7δ2 − 18δ + 27)(3 − δ)2

)

2 + δ

(
27 − 6δ + 3δ2

(3 − δ)3

)
− δ

(
3

2

(6δ6 − 23δ5 + 103δ4 − 118δ3 + 36δ2 + 333δ − 81)

(δ(7δ2 − 18δ + 27)(3 − δ)2

)
≥ 0

which is satisfied for any δ ∈ [0, 1].
Appendix G. Additional experimental results

Table 5
Policy frequencies and transition probabilities, p-values for treatment effects.

Status Quo (t) Status Quo (t+1)

D1 D2 DV C12 C1V C2V U

Dictator 1 0.018 0.000 0.096 0.003 – 0.468 0.513
Dictator 2 0.979 0.425 0.042 0.000 0.844 0.658 0.698
Dictator V – – 0.725 0.282 0.265 0.265 0.643
Coalition 1 + 2 0.153 0.051 – 0.022 0.004 0.008 0.234
Coalition 1 + V – 0.089 0.524 – 0.298 0.014 0.079
Coalition 2 + V 0.605 0.389 0.004 – 0.292 0.087 0.420
Universal 0.240 – 0.353 – 0.073 0.286 0.002

Frequency 0.676 0.027 0.430 0.008 0.521 0.554 0.261
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Table 6
Policy frequencies and transition probabilities, stricter definitions of D and U re-
gions. Notes: ** and * indicate difference with High Patience is significant, respec-
tively, at 1% and at 5% level (see p-values in Table 7).

Panel A: High Patience
Status Quo (t) Status Quo (t+1)

D1 D2 DV C12 C1V C2V U
Dictator 1 0.29 0.10 0.00 0.04 0.10 0.33 0.14
Dictator 2 0.16 0.37 0.00 0.16 0.21 0.00 0.11
Dictator V 0.00 0.00 0.99 0.00 0.01 0.00 0.00
Coalition 1 + 2 0.02 0.00 0.00 0.61 0.10 0.12 0.15
Coalition 1 + V 0.00 0.00 0.12 0.00 0.57 0.26 0.06
Coalition 2 + V 0.00 0.00 0.11 0.00 0.29 0.56 0.04
Universal 0.00 0.00 0.00 0.00 0.08 0.10 0.82
Frequency 0.01 0.01 0.24 0.07 0.26 0.24 0.16

Panel B: Low Patience
Status Quo (t) Status Quo (t+1)

D1 D2 DV C12 C1V C2V U
Dictator 1 0.09 0.03 0.13* 0.03 0.22 0.25* 0.25
Dictator 2 0.09 0.29 0.09* 0.03** 0.23 0.09 0.20
Dictator V 0.00 0.00 0.98 0.01 0.01 0.00 0.01
Coalition 1 + 2 0.03 0.09 0.01 0.24** 0.21 0.29* 0.13
Coalition 1 + V 0.00 0.00 0.13 0.01 0.54 0.27 0.05
Coalition 2 + V 0.00 0.00 0.17 0.00 0.31 0.46 0.06
Universal 0.00 0.00 0.02 0.00 0.21 0.06 0.71
Frequency 0.01 0.02** 0.24 0.03** 0.31 0.26 0.12

Table 7
Policy frequencies and transition probabilities, stricter definitions of D and U regions, 
p-values for treatment effects.

Status Quo (t) Status Quo (t+1)

D1 D2 DV C12 C1V C2V U

Dictator 1 0.201 0.245 0.013 0.671 – 0.034 –
Dictator 2 0.358 0.223 0.038 0.003 0.753 0.176 0.764
Dictator V – – 0.488 0.206 0.737 – 0.206
Coalition 1 + 2 0.641 – – 0.000 0.173 0.044 0.418
Coalition 1 + V – – 0.933 0.858 0.709 0.635 0.699
Coalition 2 + V – – 0.130 – 0.867 0.205 0.293
Universal – – – – 0.305 0.495 0.261

Frequency 0.810 0.008 0.733 0.001 0.272 0.217 0.662

Table 8
Tobit estimates of allocation to the veto player (out of 60 units). The unit of analysis 
is a committee in a round and include the initial status quo exogenously assigned 
by the computer (coded as policy outcome in round 0). Standard errors clustered 
by sessions in parentheses. ** significant at the 1% level.

(1) (2) (3)

Round 2.545** 3.185** 2.531**
(0.000) (0.001) (0.000)

Constant 22.707** 23.360** 20.647**
(1.022) (1.301) (2.326)

Sample All δ = 0.50 δ = 0.75
Pseudo-R2 0.0210 0.0223 0.0254
Observations 2148 1144 1004

Appendix H. Experimental instructions (high patience treatment)

Thank you for agreeing to participate in this experiment. During the experiment we require your complete, undistracted 
attention and ask that you follow instructions carefully. Please turn off your cell phones. Do not open other applications on 
your computer, chat with other students, or engage in other distracting activities, such as reading books, doing homework, 
etc. You will be paid for your participation in cash, at the end of the experiment. Different participants may earn different 
amounts. What you earn depends partly on your decisions, partly on the decisions of others, and partly on chance. It is 
important that you do not talk or in any way try to communicate with other participants during the experiments.

Following the instructions, there will be a practice session and a short comprehension quiz. All questions on the quiz 
must be answered correctly before continuing to the paid session. At the end you will be paid in private and you are under 
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Table 9
Proposing behavior in regions U and C12. Notes: For each treatment, the first column is for all ob-
served proposals, the second column for proposals that are voted on and accepted; Rich Non-Veto 
(Poor Non-Veto) is the non-veto player who receives the most (least) in the status quo; Coalition 
Partner is the non-proposing player who receives the most in the proposal; ** and * indicate differ-
ence with High Patience is significant, respectively, at 1% and at 5% level.

A: Veto Proposer High Patience Low Patience

ALL ACC ALL ACC

Mean Premium to Proposer 10.63 9.13 13.25 14.58**
Mean Premium to Rich Non-Veto −8.59 −7.91 −13.17 −14.76**
Mean Premium to Poor Non-Veto −2.04 −1.22 −0.09 0.18
Mean Premium to Coalition Partner 3.95 4.19 1.89 3.00*
Observations 239 32 169 33

B: Non-Veto Proposer High Patience Low Patience

ALL ACC ALL ACC

Mean Premium to Proposer 4.03 2.74 6.97** 8.16**
Mean Premium to Veto 1.19 3.93 5.43** 8.16*
Mean Premium to Other Non-Veto −5.22 −6.68 −12.40** −16.32**
Mean Premium to Coalition Partner 1.87 4.22 5.72** 8.11*
Observations 478 74 338 75

no obligation to tell others how much you earned. Your earnings are denominated in FRANCS which will be converted to 
dollars at the rate of 60 FRANCS to 1 DOLLAR.

This an experiment in committee decision making. The experiment will take place over a sequence of 10 matches. We 
begin the match by dividing you into 4 committees of 3 members each. Each of you is assigned to exactly one of these 
committees. You will be given a temporary Committee Member Number (either 1, 2 or 3) and you are not told the identity 
of the other members of your committee. One of the members of your committee is selected at random by the computer 
to be the Veto Player for this committee. The Committee Member Number of the Veto Player will be displayed on your 
computer. For example, if you are Committee Member Number 1 and the Veto Player for this committee in this match 
is Committee Member Number 1, then you are the Veto Player in your committee in this match. In each match, your 
committee will make budget decisions over a sequence of several rounds.

In each round, your committee has a budget of 60 francs. Your committee must decide how to divide this budget into 
private allocations A1, A2, and A3. These private allocations A1, A2, and A3 have all to be greater than or equal to 0 and 
must add up to exactly 60. If your committee budget decision is (A1, A2, A3), then A1 francs go directly to member 1’s 
earnings, A2 francs go to member 2’s earnings, and A3 francs go to member 3’s earnings.

Here is the procedure for how your committee makes budget decisions. At the beginning of the first round, the computer 
randomly selects an initial budget decision (A1, A2, A3) and displays it on your computer as what we call the Standing 
Budget. Next, each of you makes a provisional proposal for an alternative budget decision you would like your committee 
to consider. (You may propose the Standing Budget itself if you wish.) Your proposal can be any budget decision—that is, 
any three non-negative numbers (including 0s) that add up to exactly 60. After all three members of your committee have 
chosen provisional proposals, one of these provisional proposals is selected at random by the computer to be the Proposed 
Budget. The Proposed Budget will be displayed on your computer, along with the number of the Committee Member who 
proposed it. The committee then conducts a vote between the Standing Budget and the Proposed Budget. The Proposed 
Budget passes only if the Veto Player and at least one other committee member vote in its favor. If the Veto Player votes 
against the Proposed Budget, the Standing Budget wins. If the Veto Player votes in favor of the Proposed Budget but the two 
other committee members vote against it, the Standing Budget wins. Your earnings in this round are determined by your 
private allocation in whichever budget decision wins in the voting stage.

One important aspect of your committee’s budget decision is that it is inertial. That is, the budget decision that prevails 
in round 1 becomes the Standing Budget in round 2 and will thus determine the private allocations in round 2 if your 
committee does not agree on a different budget decision. Every round, the budget decision of your committee determines 
both your earnings in this round and the Standing Budget for the following round.

The total number of rounds in a match will depend on the rolling of a fair 8-sided die. When the first round ends, we 
roll it to decide whether to move on to the second round. If the die comes up a 1 or a 2 we do not go on to round 2, and 
the match is over. We will describe in a moment what happens after a match is over. If the die comes up a 3, 4, 5, 6, 7, 
or 8, we continue to the next round. In round 2, your Committee Member Number, the members of your committee and 
the identity of the Veto Player all stay the same. Round 2 proceeds just as round 1, with the exception that the Standing 
Budget in round 2 is whatever the committee decision was in round 1. Therefore, if the original Standing Budget won the 
voting stage in round 1, this continues as the Standing Budget in round 2. But if the Proposed Budget in round 1 won the 
voting stage, then it replaces the original Standing Budget and becomes the new Standing Budget for round 2. The proposal 
and voting process then follows the same rules as round 1. Once again, each member types in a proposal, the computer 
then randomly selects one of them to be the Proposed Budget and a vote is taken between the round 2 Standing Budget 
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and the Proposed Budget. After round 2 is over, we roll the 8-sided die again to determine whether to move on to a third 
round. We continue to more rounds, until a 1 or a 2 is rolled at the end of a round and the match ends. It is important to 
remember that your Committee Member Number, the members of your committee, and the identity of the Veto Player all 
stay the same in all rounds of the match. In round T, the Standing Budget is always whatever the committee decision was 
in round T-1.

After the first match ends, we move to match 2. In this new match, you are reshuffled randomly into 4 new committees 
of 3 members each. Your assigned a new Committee Member Number (1, 2, or 3). The computer randomly selects a Standing 
Budget for each committee for round 1, and randomly selects a Veto Player for each committee. The match then proceeds 
the same way as match 1. This continues for 10 matches. After match 10, the experiment is over. Your total earnings for the 
experiment are the sum of your earnings over all rounds and all matches.
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