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Abstract

We conduct a large-scale interdisciplinary meta-analysis to aggregate the knowl-

edge from empirical estimates of distributional preferences reported from 1999 to 2022.

In particular, we examine 289 estimates of sensitivity to inequality from 40 articles

in economics, psychology, neuroscience and computer science which structurally esti-

mate the Fehr and Schmidt (1999) model. Our analysis indicates that individuals are

inequality averse: mean sensitivity to disadvantageous inequality is 0.467 with a 95%

probability that the true value lies in the interval [0.302, 0.642]; mean sensitivity to

advantageous inequality is 0.331 with a 95% probability that the true value lies in the

interval [0.266, 0.396]. We observe high levels of heterogeneity, both across studies and

across individuals, with estimated parameters sensitive to some features of the study

design (namely, the experimental task and the subject population). Finally, we do not

find compelling evidence of selective reporting or publication bias.
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1 Introduction

The standard economic model of choice assumes that individuals are only motivated by self-

interest. In the last three decades, however, a large body of evidence from the experimental

social sciences has showed that most people hold other-regarding preferences, that is, that

they care about others’ outcomes or whether others are treated fairly or not.

Models of decision-making augmented with other-regarding preferences have been suc-

cessfully used to explain behavior which is commonly observed in laboratory experiments yet

puzzling from the perspective of the standard economic model of choice. This includes re-

sponders’ rejection of positive offers in ultimatum games (Güth, Schmittberger and Schwarze,

1982; Eckel and Grossman, 2001), proposers’ positive offers in dictator games (Forsythe et

al., 1994; Hoffman et al., 1994; Henrich et al., 2005), cooperation in the static prisoner’s

dilemma (Yamagishi and Kiyonari, 2000), positive contributions in the linear public good

game (Ledyard, 1995), and positive amounts sent and returned in trust games (Berg, Dick-

haut and McCabe, 1995; Burks, Carpenter and Verhoogen, 2003). Moreover, models of

other-regarding preferences have been used to explain or predict behavior outside of the

laboratory, with applications ranging from optimal climate policy (Azar and Sterner, 1996;

Anthoff et al., 2009; Tol, 2010), industrial organization (Huck et al., 2001) and trade protec-

tion (Lü et al., 2012) to contract design (Fehr and Schmidt, 2004; Fehr et al., 2007, 2008)

and redistributive policies (Epper et al., 2020).

The most cited and influential model of other-regarding preferences is the model proposed

by Fehr and Schmidt (1999) (FS henceforth).1 In the simplest two-players version of this

model, the utility agent i derives from outcome x is

Ui(x) = xi − αi max[xj − xi, 0]− βi max[xi − xj, 0], j ̸= i.

The agent’s utility does not depend only on her own payoff, xi, but also on the comparison

1As of 27 September 2022, FS has 14,196 citations on Google Scholar and 5,064 citations on Web of
Science.
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with the other agent’s payoff, xj. Assuming that α > β > 0 (as in FS), this is a model of

inequity aversion (where α can be interpreted as envy and β as guilt), since differences in

payoffs cause disutility for agent i. At the same time, this simple framework can capture other

kinds of other-regarding preferences: if α < 0 and β < 0, this is a model of inequality seeking ;

if α < 0 and β = 0, this is a model of altruistic preferences ; if α > 0 and β < 0, this is a model

of spiteful preferences ; and if α < 0 and β > 0, this is a model of efficiency concerns. This

parsimonious utility specification is able to explain many of the above mentioned “anomalies”

while keeping the model simple and tractable at the same time.

Despite all the work social scientists have done in the past 20 years to give the model

an axiomatic foundation and to test it in the laboratory, there is still no consensus on

what are plausible values of α and β or on what is the distribution of these two preference

parameters in relevant populations. In their original paper, FS calibrate a distribution of

parameters to match the behavior observed in previous ultimatum game experiments (e.g.,

Roth and Erev 1995). This distribution assumes that α can take four different values in the

population — 0, 0.5, 1 and 4 — with calibrated shares of, respectively, 30%, 30%, 30% and

10%; on the other hand, β was assumed to take three different values — 0, 0.25 and 0.6 —

with calibrated shares of, respectively, 30%, 30% and 40%. More recently, Eckel and Gintis

(2010) reviewed the mean parameters estimated in four studies other than FS and reported

values ranging between 0.31 and 1.89 for α, and between −0.27 and 0.80 for β. Blanco,

Engelmann and Normann (2011), instead, estimated the coefficients at the individual level

using ultimatum and dictator games and reported average estimates of 1.18 for α and 0.47

for β. The distributions in FS and in Blanco, Engelmann and Normann (2011) have been

used as benchmark in theoretical work with inequity averse agents to deliver counterfactuals

and policy recommendations (see, e.g., Fehr and Schmidt 2004, Fehr, Klein and Schmidt

2007, Fehr, Kremhelmer and Schmidt 2008, Normann and Rau 2015, and Vogt 2016).

In this paper, we aggregate the knowledge from empirical estimates of other-regarding

preferences accumulated in over 20 years of research with the method of meta-analysis, that
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Figure 1: Distribution of Disadvantageous (α) and Advantageous Inequality (β) Coefficients.
Notes: Bins for histograms are 0.05 wide; the Gaussian kernel density (solid black line) uses
the Silverman’s rule of thumb for bandwidth selection; in the panel for β, the horizontal axis
is truncated at −0.5 for better visual rendering but the kernel density uses all estimates.

is, “the statistical analysis of a large collection of results from individual studies for the

purpose of integrating the findings” (Glass, 1976). In a meta analysis, studies are selected

using a precise inclusion criteria; then, the information contained in these studies is codified

and summarized to explain both regularities and variation across studies.2

In particular, we collect 145 estimates of sensitivity to disadvantageous inequality and

144 estimates of sensitivity to advantageous inequality from 40 articles in economics, psychol-

ogy, neuroscience and computer science which structurally estimate the FS model of social

preferences and we tackle three research questions. First, given the accumulated knowledge,

what is the best estimate of α and β? Second, how do α and β vary depending on the

characteristics of a study (e.g., the experimental task and the subject population)? Third,

is there evidence of selective reporting or publication bias?

In order to answer the first question, we initially conduct a non-parametric analysis.

Figure 1 shows the distribution of estimates in our dataset. The raw mean and median

estimates of α are, respectively, 0.33 and 0.12 with around 40% of the estimates (57 out of

145) equal to or less than 0 (in contrast with the assumption in FS). The raw mean and

2Thus, meta-analysis differs from narrative reviews that give, instead, a descriptive overview of a research
topic, presenting the historical trajectory and the key findings in the literature. While providing a useful
summary of past research and suggesting future avenues, narrative reviews do not systematically analyze all
studies asking the same research question in order to test a statistical hypothesis like meta-analyses do.
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median estimates of β are, respectively, 0.25 and 0.26, and, again, a sizeable number of

observations which do not match the assumption in FS (β ≤ 0 in 21 out of 144 estimates).

Focusing on studies which estimate both parameters, disadvantageous inequality matters

more than advantageous inequality only around 40% of the time (in 57 out of 140 pairs of

estimates) and the correlation between the two parameters is indistinguishable from 0. In

the non-parametric analysis, all estimates are given equal weight (even if the parameters

computed in some studies are more reliable than others) and are assumed to be independent

from one another (even if the same study provides multiple estimates). To tackle these issues,

we compute a “weighted average” for α and β using a multi-level random-effects model and

a Bayesian hierarchical model. The two approaches give nearly identical results and suggest

that inequality aversion is a strong driver of human behavior: according to the multi-level

(Bayesian hierarchical) model, the meta-synthetic average for the disadvantageous inequality

coefficient is 0.469 (0.467) while the meta-synthetic average for the advantageous inequality

coefficient is 0.331 (0.331) and both are strongly statistically significant.

While we use weighted averages to summarize the information in our dataset, we observe

high level of heterogeneity in estimates, both across studies and across individuals in a single

study. To explain this heterogeneity, we use the features of the studies and of the estimates

we coded in our dataset as mediating variables. These meta-regressions reveal interesting

patterns: estimates of α computed using choices from strategic environments are larger than

estimates computed using choices from individual decision-making tasks, while the reverse

is true for estimates of β; and experimental subjects from Southern Europe (France, Italy,

Spain, and Turkey) are more averse to advantageous inequality than subjects from the US

and Northern Europe (Denmark, Germany, Netherlands, Sweden, Switzerland and UK).

Finally, one aspect to keep in mind when conducting a meta-analysis is the problem of

selective reporting and publication bias which arise when the probability of a study being

published is affected by its results. In order to detect selective reporting and investigate the

incidence of p-hacking, we use funnel plots, the Funnel Asymmetry Testing and Precision
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Effect Testing (FAT-PET) procedure (Stanley and Doucouliagos, 2012, 2017), histograms

of z-statistics and the p-curve (Simonsohn, Nelson and Simmons, 2014). On the one hand,

funnel plots highlight the absence of studies estimating (large in magnitude and imprecisely

estimated) negative values of α and positive values of β and this is confirmed by the FAT-PET

procedure. Moreover, we observe a jump around the threshold for statistical significance in

the histograms of z-statistics for both parameters, which is a hint of p-hacking. On the other

hand, the asymmetry in the funnel plots could be generated in the absence of publication

bias — for example, because of feasibility constraints in the estimation of the parameters

due to the experimental tasks employed or because of the implausible preferences implied by

the missing values of α and β — and the publication-bias corrected meta-synthetic averages

of the two parameters are still positive and strongly statistically significant (0.340 for α

and 0.400 for β). In addition, the p-curves for both α and β are highly right-skewed which

strongly supports the hypothesis that both parameters are different from zero and that

researchers did not engage in p-hacking. We, thus, conclude that there is no compelling

evidence of selective reporting or publication bias.

While meta-analysis is not as common in economics as in other disciplines (e.g., medicine

and public policy), its popularity has increased in the last decade, especially after concerns

have been raised regarding the replicability of results in the social sciences.3 Examples

of meta-analyses in experimental and behavioral economics are Zelmer (2003) on linear

public good games, Embrey, Fréchette and Yuksel (2018) on the finitely repeated prisoner’s

dilemma, Baranski and Morton (2021) on multilateral alternating-offer bargaining, Imai,

Rutter and Camerer (2021) on time preferences, Brown et al. (2021) on loss aversion, and

Meager (2019, 2022) on the effect of microcredit. To the best of our knowledge, this is the first

work that uses meta-analysis techniques to summarize empirical estimates of other-regarding

preferences. Our work builds on the narrative reviews on other-regarding preferences by Fehr

and Schmidt (2006) and Cooper and Kagel (2016), the meta-analysis on dictator games by

3See Dreber and Johannesson (2019) and Camerer et al. (2016).
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Engel (2011) and the meta-analysis on ultimatum games by Oosterbeek, Sloof and Van

De Kuilen (2004) and Cooper and Dutcher (2011). These meta-analyses summarize the

behavior observed in laboratory experiments testing ultimatum and dictator games and

investigate the explanatory power of mediating variables (e.g., the size of the pie and the

location of the experiment) but do not discuss structural estimates of a model.

The rest of this paper is organized as follows. Section 2 describes the model of other-

regarding preferences proposed by FS and its variations structurally estimated in the liter-

ature. Section 3 describes how the data was assembled and coded. Section 4 presents the

results and Section 5 concludes.

2 The FS Model of Other-Regarding Preferences

In this section, we describe the original model in FS and the variations whose parameters

are structurally estimated by the studies in our dataset. Consider a set of N players indexed

by i and a vector of outcomes (e.g., monetary payoffs), x = (x1, x2, ..., xN). FS assume that

player i derives the following utility from x:

Ui(x) = xi − αi
1

N − 1

∑
j ̸=i

max[xj − xi, 0]− βi
1

N − 1

∑
j ̸=i

max[xi − xj, 0], (1)

where αi ≥ βi and 1 > βi ≥ 0. With only two players, this simplifies to

Ui(x) = xi − αi max[xj − xi, 0]− βi max[xi − xj, 0], i ̸= j. (2)

The first term in equations (1) and (2) captures the utility from one’s own outcome;

the second term measures the disutility from being behind in pairwise comparisons (i.e.,

sensitivity to disadvantageous inequality); and the third term measures the disutility from

being ahead in pairwise comparisons (i.e., sensitivity to advantageous inequality).
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Figure 2: Utility of Inequality Averse Player i in Game with 2 Players (α = 2, β = 0.5).

We briefly discuss the assumptions made in the original contribution by FS. First, FS

assume α > 0 and β > 0, making this a model of inequality aversion: fixing her own payoff,

xi, player i’s utility is maximized when xj = xi (see Figure 2). FS further assume that

α ≥ β. This assumption implies that disadvantageous inequality hurts more than advanta-

geous inequality and is inspired by earlier work in behavioral and experimental economics

(Kahneman and Tversky, 1979; Loewenstein, Thompson and Bazerman, 1989). Finally, FS

constrain β to be smaller than 1 in order to avoid an implausible scenario: agents with β > 1

are willing to burn money in order to reduce the favorable gap between their allocation and

the allocation to others. As discussed in the Introduction, while this is interpreted as a

model of inequality aversion when α > 0 and β > 0, this parsimonious framework can be

used to model different kinds of other-regarding preferences. Our meta-analysis will reveal

which type of other-regarding preferences is more common in the populations that have been

sampled in 20 years of social sciences experiments.

Most studies in our dataset estimate α and β assuming the utility function specification

in FS. However, some studies explore variations of the original framework. First, for the sake

of parsimony and mathematical tractability, FS assumed a piece-wise linear utility function.

This predicts corner solutions in decision environments where we usually observe interior
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choices.4 To improve on this, Bellemare, Kröger and van Soest (2008) assume a non-linear

disutility from inequality and estimate the following utility function:

Ui(x) = xi −α1i max[xj − xi, 0]−α2i max[xj − xi, 0]
2 − β1i max[xi − xj, 0]− β2i max[xi − xj]

2

If α2i = β2i = 0, this model simplifies to FS. Bellemare and coauthors find the sensi-

tivity to advantageous inequality to be nearly linear, while the sensitivity to advantageous

inequality to be an increasing and concave function of the gap in outcomes.

A second simplification of the original model is the lack of any role for reciprocal motives.

Morishima, Schunk, Bruhin, Ruff and Fehr (2012) and Bruhin, Fehr and Schunk (2019)

augment FS to incorporate reciprocity, adopting the following utility function inspired by

Fehr and Schmidt (1999) and Charness and Rabin (2002):

Ui(xi, xj) = (1− βr − αs− θq + δv)xi + (βr + αs+ θq − δv)xj,

where r, s, q, v are indicators for advantageous inequality, disadvantageous inequality, positive

reciprocity and negative reciprocity respectively. Here, α and β are inequality sensitivity

parameters while θ and δ are reciprocity parameters. For example, if θ > 0 and δ < 0,

an agent rewards kind actions at a cost (i.e., he displays positive reciprocity) and punishes

selfish actions at a cost (i.e., he displays negative reciprocity). Note that, in this model, the

sign of the disadvantageous inequality coefficient has the opposite meaning compared to the

standard FS model: here, inequity aversion is captured by α < 0 and β > 0.5 Bellemare,

Kröger and van Soest (2011) follow another route to introduce reciprocity in FS and assume

the following utility function:

Ui(xi, xj) = xi − (αi + li)max[xj − xi, 0]− (βi + ki)max[xi − xj, 0]

4Consider, for example, a dictator game. If β < 0.5, the dictator keeps the whole budget; if β > 0.5,
instead, the dictator shares the budget equally.

5We take this into account when using the estimates from these papers in our meta-analysis.
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Here, depending on the intentions of the other players, li and ki change the marginal disutility

of disadvantageous or advantageous allocations.

Finally, the baseline FS model is sufficiently tractable to easily incorporate concerns in

addition to or different from inequality sensitivity or reciprocity. For example, Alger and

van Leeuwen (2021) augment the model by adding Kantian morality, whereby an individual

evaluates her actions by considering what her payoff would be if others behaved in the

same way; and Boun My, Lampach, Lefebvre and Magnani (2018) estimate a model of

advantageous inequality aversion which includes loss aversion.

3 Data

3.1 Identification and Selection of Relevant Studies

In order to perform an unbiased meta-analysis, it is important to define a precise and un-

ambiguous inclusion criteria. Our criterion is to include “all papers that estimated the

parameters for sensitivity to disadvantageous inequality, α, and/or advantageous inequality,

β, using the model by Fehr and Schmidt (1999)”.6

The search procedure followed four steps. First, we read the narrative reviews by Fehr

and Schmidt (2006) and Cooper and Kagel (2016) and searched on Google Scholar to find

a first seed of papers that estimated α and β. Second, we read these papers to identify

the best possible combination of keywords for a more detailed search. Third, we searched

the scientific citation indexing databases Web of Science (February 8, 2022), Google Scholar

(February 8, 2022) and Scopus (7 September 2022) using the query in Figure 3. Since we

are interested in estimations of the FS parameters, we restricted the search to papers that

cite FS. This search returned 1,916 articles. We then read these articles and excluded papers

that were clearly irrelevant for our analysis — for example, articles that measured other-

6This definition includes also the models that use FS as baseline and augment it by adding other param-
eters as discussed in Section 2.
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Figure 3: Query Used for Search on Web of Science, Google Scholar and Scopus

regarding preferences in animals or studies that, while reporting the results of dictator and

ultimatum games, did not estimate the parameters of interest. Finally, we read through the

remaining articles and applied our inclusion criteria. The final dataset consists of 40 articles

and the complete list is available in Appendix A.7

3.2 Data Construction

After identifying the relevant articles, we assembled the dataset for the meta-analysis by

coding the estimates for α and β, the features of the studies and the features of the estima-

tion methodology. The main variables of interest are the structural estimates for the two

coefficients of sensitivity to advantageous and disadvantageous inequality. In our 40 articles,

these estimates take four forms: (i) aggregate, where a single value for α and β is estimated

for the pooled data of all subjects in the study; (ii) finite-mixture, where a finite number

of values for α and β alongside their distributions are estimated from the pooled data of

all subjects; (iii) individual-level mean, where α and β are estimated separately for each

subject and the mean value of the parameters is reported; and (iv) individual-level median,

same as iii) but where the median (rather than the mean) is reported. The first, third and

fourth types of estimates are ready to be used in the meta-analysis.8 For the finite-mixture

7When a precise measure of the estimated parameters was not available (e.g., because the article reported
only a scatter plot or a bar chart of individual-level estimates), we contacted the authors to get additional
details. This procedure led us to exclude a single study which computes individual-level estimates for α and
β but reports only a bubble plot of these estimates (Teyssier, 2012). While it would be possible to recover an
imprecise mean or median for the estimates in this study, given the high level of arbitrariness this exercise
would entail (for example, in evaluating the exact location of bubbles in the graph and their relative size),
we decided not to include this paper in the dataset.

8The 2 estimates from Corgnet, Esṕın and Hernán-González (2015) and 2 out of 4 estimates from
Hedegaard, Kerschbamer, Müller and Tyran (2021) are an exception: they report set-valued individual-level
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estimates, we computed and coded a weighted average for each parameter.9

The measure of estimation uncertainty is another important variable to code in the

dataset. This information is fundamental when conducting a meta-analysis: instead of simply

averaging estimates from various studies, our aggregation procedure gives more weight to

estimates that have lower SEs and, thus, are more precisely estimated (for example, because

they are computed from experiments with a larger sample size). Out of 289 estimates in our

dataset, the source reported the SEs for 81 estimates and, in other 130 cases, we were able to

compute the SEs using the reported standard deviation and sample size. For the remaining

78 estimates, we did not have (direct or indirect) information about the SEs.10

We had two options: either drop the 78 estimates without SEs or approximate the SEs

and keep these estimates in the dataset. We chose the latter option, especially since the

observations would not be dropped randomly: as the density plots in the top row of Figure

4 show, there is a difference in the distribution of α and β between studies that report SEs

and studies that did not and, thus, dropping the latter subset of estimates would introduce

a bias in our results.11 For this reason, while using approximated SEs is a second-best,

we deemed this as the more sensible option. Nonetheless, we present the main results of

our meta-analysis both for the full sample and for the restricted sample that considers only

estimates with reported (i.e., not approximated) SEs. For the approximation procedure,

estimates and the frequency of individuals in each set. In this case, we identity the interval where the median
individual is located and we approximate the median value of the parameter with the median point of this
interval. For example, consider an hypothetical study which estimates 6 participants have α ∈ [0, 0.2), 4
participants have α ∈ [0.2, 0.4), and 4 participants have α ∈ [0.4, 0.8]. In this case, the median individual
has α ∈ [0.2, 0.4) and we approximate the median individual-level estimate with 0.3.

9For example, consider one of the finite-mixture estimates of α from Bruhin, Fehr and Schunk (2019)
which reports the presence of three types in the population: α1 = −0.159, α2 = −0.065, and α3 = 0.437.
The estimated frequencies associated with each of these types are p1 = 0.405, p2 = 0.474, and p3 =
0.121. We construct a single estimate which is given by α̂ = p1α1 + p2α2 + p3α3 = −0.042. Moreover,
we construct a measure of estimation uncertainty as follows: first, we compute the standard deviation as
SD =

√∑
i pi(αi − α̂)2; second, we compute the standard error as SD/

√
n, where n is the sample size. This

procedure disregards the estimated uncertainty of each αi and the associated pi but it greatly simplifies our
analysis and it is similar to the procedure used by studies that report an individual-level mean.

10This usually happens for articles that compute individual-level estimates but report only the mean or
median without the standard deviation. In one case, the standard deviation was reported but the sample
size was unclear.

11The two distributions of β are statistically different according to a Wilcoxon rank sum test.
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Figure 4: Distribution of Estimates and SEs for α and β as Function of SE Type. Note: The
top two graphs show kernel density estimates (Gaussian with Silverman’s rule of thumb)
for the subsets of parameters with reported vs. imputed SEs; the bottom two graphs show
kernel density estimates of SEs in the two subgroups; the x-axis in the density plot for β
is truncated at −0.5 for better visual rendering but the kernel density uses all estimates;
dotted vertical lines are at 0.

we followed Brown, Imai, Vieider and Camerer (2021): we first estimated the parameters

characterizing the distribution in the data as log(seo) ∼ N (µse, σ
2
se); and we then used these

distributional parameters to estimate the missing SEs as log(sem) ∼ N (µ̂se, σ̂
2
se), where o

stands for observed and m stands for missing. In order for this procedure to give a good

approximation of the SEs, we need variables that are significantly associated with them. In

our dataset, the values of the parameters are the best predictors for the values of their SEs,

while other information available to us does not improve the estimates. We, thus, run the

two following regressions to find µ̂α
se, µ̂

β
se and their respective variances:12

log(seαo ) = δ0 + δ1αo + δ2βo

log(seβo ) = γ0 + γ1αo + γ2βo

12For studies estimating a single parameter, we use only this estimate (and a constant) as regressor.
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Figure 5: Scatter Plots of α and β SEs as a Function of SE Type. Note: The x-axis in the
plot for β is truncated at −0.3 for better visual rendering.

The two parameters explain 43% of the variance in the SEs for α and 25% of the variance

in the SEs for β. Our approximation is, thus, better for α than for β.

Finally, we coded variables describing features of the studies and of the estimates. These

variables include the paper publication status, the methodology (e.g., laboratory experiment,

classroom experiment, online experiment), the subject population (e.g., non-representative

sample of college students, non-representative sample of adults, sample representative of

a target population), subjects’ location of residence, the task used to elicit the parameters

(e.g., dictator game, ultimatum game, etc.), the reward type, and the utility function posited

for the estimation (e.g., FS, FS plus Kantian morality, etc.). The next subsection discusses

the distribution of the main features in our dataset. The full list is available in Appendix B.

3.3 Features of Studies and Estimates in the Dataset

As discussed in Section 3.1, we identified 40 articles which estimated the advantageous and

disadvantageous inequality parameters in FS. In our dataset, we use as unit of measure a

single study rather than a single paper. These two objects usually coincide but there is one

exception: Beranek, Cubitt and Gächter (2015) report results of three distinct laboratory

experiments conducted in the UK, the US and Turkey with three different samples. In our

terminology, each of these three laboratory experiments comes from the same paper but

corresponds to a different study. This means that, overall, we have 42 studies (discussed
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in 40 papers). These studies report estimates for 149 models of social preferences à la FS:

140 models estimate both the advantageous and disadvantageous inequality parameters, 5

models estimate only α, and 4 models estimate only β.

Table 1 reports the coded features of the 42 studies in our dataset. Among the 42 studies,

37 were presented in papers published (as of 07 September 2022) in economics, psychology,

neuroscience and computer science journals. The majority of these 42 studies conducted

traditional in-person laboratory experiments, while 7 studies conducted experiments online.13

The studies were conducted in 11 different countries (China, Denmark, France, Germany,

Italy, Netherlands, Spain, Sweden, Switzerland, Turkey, UK, and US) and involved mostly

college students (33 studies out of 42), with 4 studies recruiting a sample representative of

the Danish, Dutch or German general population (Bellemare, Kröger and van Soest, 2008,

2011; Kerschbamer and Müller, 2020; Hedegaard, Kerschbamer, Müller and Tyran, 2021),

and 6 studies recruiting a non-representative sample of adults (Dannenberg, Sturm and Vogt,

2010; Beranek, Cubitt and Gächter, 2015; Sáez, Zhu, Set, Kayser and Hsu, 2015; He and

Wu, 2016; Hu, He, Zhang, Wölk, Dreher and Weber, 2018; Carpenter and Robbett, 2022).

All studies offered monetary rewards for participating in the experiments.

Table 2 reports the coded features of the 289 estimates in our dataset. Around 55% of

the estimates come from studies that compute individual-level estimates of α and β and then

report the mean and/or the median; around 20% come from four studies which use finite-

mixture models (Bruhin, Fehr and Schunk, 2019; Alger and van Leeuwen, 2021; Hedegaard,

Kerschbamer, Müller and Tyran, 2021; Carpenter and Robbett, 2022); and around 25% come

from studies which estimate parameters for a “representative” agent by pooling together all

the available data. Around 75% of the estimates are computed assuming the original utility

function specification from FS; around 13% and 10% estimates are computed assuming the

13One study recruited participants from mTurk, one from Prolific, two using CentERpanel (an online
survey consisting of a representative sample of the adult Dutch population), one using the German Internet
Panel (an online survey consisting of a representative sample of the adult German population), one using
the internet Laboratory for Experimental Economics (iLEE) at the University of Copenhagen (with subjects
selected to be a random sample from the general Danish population), and one contacting climate negotiators
from the Intergovernmental Panel on Climate Change directly via email.
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Table 1: Features of the Studies (N = 42) in the Dataset

Frequency Percentage
Publication Status
Published (as of September 7, 2022) 37 0.88
Unpublished 5 0.12
Methodology
Laboratory Experiment 33 0.79
Classroom Experiment 1 0.02
Online Experiment 7 0.17
Multiple Methodologies 1 0.02
Geographic Location
United States 10 0.24
Northern Europe (CH, DE, DK, NL, SE, UK) 20 0.48
Southern Europe (FR, IT, ES, TR) 6 0.14
China 3 0.07
Multiple or Unspecified Locations 3 0.07
Subject Population
College Students 31 0.74
Non-Representative Sample of Adults 6 0.14
Representative Sample (of DE, DK, or NL) 4 0.10
Multiple Populations 1 0.02
Experimental Task Used To Estimate α
Standard Dictator Game 3 0.07
Mini Dictator Game 2 0.04
Mini Dictator Game with Equality-Efficiency Trade-Off 18 0.39
Ultimatum Game 12 0.26
Other Game 11 0.24
Experimental Task Used To Estimate β
Standard Dictator Game 3 0.06
Mini Dictator Game 2 0.04
Mini Dictator Game with Equality-Efficiency Trade-Off 26 0.56
Ultimatum Game 5 0.11
Other Game 11 0.23
Reward Type
Money 42 1.00

Note: ‘Other Game’ includes bargaining game, gift exchange game, sequential prisoner dilemma,
trust game, sequential public good game, and Stackelberg game; we label as ‘Mini Dictator Game’
a task where a single decision-maker chooses from a finite set of (exogenous) self/other
allocations; in the papers, this task has different labels (‘ultimatum game abstracted from
strategic interactions’, ‘choice menu’, ‘equality equivalence test’, ‘inequality list’, and ‘random
ultimatum game’).

model in FS is augmented with, respectively, reciprocity parameters or Kantian morality; and

the remaining 3% of estimates use the baseline model in FS plus intentions, non-linearity or
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Table 2: Features of the Estimates (N = 289) in the Dataset.

α (N = 145) β (N = 144)
Frequency Proportion Frequency Proportion

Utility Function in Estimated Model
Linear FS 107 0.74 104 0.73
Non-Linear FS 2 0.01 2 0.01
Linear FS + Reciprocity 19 0.14 19 0.13
Linear FS + Kantian Morality 15 0.10 15 0.11
Linear FS + Intentions 2 0.01 2 0.01
Linear FS + Loss Aversion 0 0.00 2 0.01
Type of Estimates
Aggregate 38 0.26 37 0.25
Finite Mixture 24 0.17 24 0.17
Individual Mean 60 0.41 60 0.42
Individual Median 23 0.16 23 0.16
Standard Errors
Reported 108 0.74 103 0.72
Imputed 37 0.26 41 0.28

loss aversion. The parameters are elicited using choice data from a variety of games. However,

even if some studies do use more complex games (e.g., sequential prisoner’s dilemmas or

sequential public good games), more than half of the estimates come from experiments

where subjects play a combination of ultimatum games and dictator games or variations of

these.

4 Results

In this section, we first provide a non-parametric description of the 145 estimates of α

and 144 estimates of β in our dataset (Section 4.1). We then fit a random-effects multi-level

model to find average values for the advantageous and disadvantageous inequality coefficients

which take into account the different degree of precision of the various estimates and the

correlation between multiple estimates from the same study. This analysis, which is presented

in Section 4.2, provides the main results of the paper. In addition, we try to understand the

heterogeneity across studies using the features coded in our dataset (Section 4.3). Finally,
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Figure 6: Funnel Plots of Disadvantageous (α) and Advantageous Inequality (β) Coefficients.
Notes: The vertical continuous line is at 0 and the diagonal dotted lines represent a p-value
of 0.05 for a z-test whose null hypothesis is that the estimate is equal to 0 (i.e., estimates
below each dotted line are statistically different from 0).

in Section 4.4, we investigate the issue of publication bias and selective reporting with the

use of funnel plots and the FAT-PET procedure.

4.1 Non-Parametric Analysis

Figure 1 shows the distribution of the 145 estimates of α and of the 144 estimates of β in our

dataset.14 The raw mean and median for α are, respectively, 0.33 and 0.12. In contrast with

the assumption in FS (α > 0), around a third of the estimate (57 out of 145) are equal to or

less than 0.15 This suggests that some individuals are not hurt by unfavorable comparisons

with others’ outcomes. Table 3 shows that the estimates of α differs depending on whether

the parameter is elicited in strategic environments (i.e., situations where the decision-maker’s

earnings depend also on the actions of others; e.g., the ultimatum game or the prisoner’s

dilemma) or in individual decision-making tasks (e.g., the dictator game or choice menus).16

In the former case, the mean and the median of α are, respectively, 0.63 and 0.30; in the

14Boxplots of the estimates reported in each paper can be found in Appendix H.
15In particular, 88 estimates are greater than 0, 8 estimates are equal to 0 and 49 estimates are smaller than

0. As shown in the left-hand panel of Figure 6, a z-test reveals that 76 estimates are positive and significantly
(i.e., p-value < 0.05) different from 0, 33 estimates are indistinguishable from 0 and 36 estimates are negative
and significantly different from 0.

16The full list of games used in the 42 studies from our dataset and whether they are considered strategic
environments or individual decision-making tasks can be found in Table 10 in the Appendix.
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Table 3: Summary Statistics for Disadvantageous Inequality (α)

N Min 1st Q 2nd Q Mean 3rd Q Max SD
Estimate Type
Aggregate 38 −0.14 −0.07 0.12 0.24 0.28 1.89 0.44
Finite Mixture 24 −0.09 −0.05 0.00 0.05 0.15 0.35 0.13
Individual Mean 60 −0.46 −0.03 0.30 0.50 0.84 2.80 0.72
Individual Median 23 −0.13 0.00 0.03 0.33 0.33 4.50 0.94
Experimental Task
Game 60 −0.14 0.14 0.30 0.63 0.87 4.50 0.84
Individual Choice 85 −0.46 −0.07 −0.07 0.12 0.20 1.60 0.36
Complete Dataset 145 −0.46 −0.05 0.12 0.33 0.39 4.50 0.65

Table 4: Summary Statistics for Advantageous Inequality (β)

N Min 1st Q 2nd Q Mean 3rd Q Max SD
Estimate Type
Aggregate 37 −0.46 0.11 0.26 0.28 0.49 0.80 0.29
Finite Mixture 24 −0.22 −0.05 0.18 0.11 0.23 0.23 0.17
Individual Mean 60 −2.12 0.18 0.31 0.27 0.5 0.97 0.48
Individual Median 23 −0.14 0.05 0.32 0.27 0.53 0.58 0.23
Experimental Task
Game 40 −1.27 −0.06 0.12 0.11 0.31 0.80 0.33
Individual Choice 104 −2.12 0.19 0.31 0.31 0.53 0.97 0.36
Complete Dataset 144 −2.12 0.12 0.26 0.25 0.47 0.97 0.36

latter case, instead, the mean is 0.12 and the median is −0.07. This result is in line with

the discussion in Dannenberg, Riechmann, Sturm and Vogt (2007), Dannenberg, Sturm and

Vogt (2010), Kleine, Königstein and Rozsnyói (2014), Yang, Onderstal and Schram (2016),

and He and Wu (2016) and it contributes to an ongoing debate on the economic construct

captured by estimates of α. The significant difference observed in our dataset supports the

hypothesis that, in strategic environments, α captures both equity and reciprocity concerns.

The estimates of β feature a bell-shaped distribution with a fatter left tail: the raw mean

and median are, respectively, 0.25 and 0.26. While there are no estimates greater than 1 (as

assumed in FS), around a seventh of the estimates (21 out of 144) are less than 0 (in contrast

with the assumption in FS).17 This suggests that some individuals have “competitive” or

17In particular, 123 estimates are greater than 0, 1 estimate is equal to 0 and 20 estimates are smaller
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“spiteful” preferences, so that they strictly prefer reducing other earnings (while keeping

their own earnings unchanged). As shown in Table 4, contrary to α, estimates of β computed

using choices from strategic environments are smaller than estimates computed using choices

from individual decision-making tasks. This difference, which has not been discussed in the

literature, can be rationalized by a higher discomfort from a favorable comparison with

others’ outcomes when the outcome is entirely attributable to one’s own action and others

only play a passive role (because of, e.g., image concerns).

Finally, we look at the joint distribution of the two parameters. Figure 7 shows a scatter

plot of all 140 estimates for which we have a value for both α and β. We highlight two

features of the joint distribution. First, a large number of observations (83 out of 140) lie

above the 45-degree line where α ≤ β. This is in contrast with the assumption in FS and

reflects the estimates from studies which compute individual-level estimates using choices

in individual decision-making tasks (rather than in strategic environments). Second, the

correlation between the two parameters is slightly positive but not significantly different

from 0 (ρ = 0.04; p = 0.63). This is in line with the results discussed in Dannenberg,

Riechmann, Sturm and Vogt (2007) Dannenberg, Sturm and Vogt (2010), Daruvala (2010),

Blanco, Engelmann and Normann (2011), Morishima et al. (2012) and Beranek, Cubitt and

Gächter (2015). This evidence suggests that the two parameters capture two separate traits

of an individual’s social preferences which are uncorrelated with each other or, at least,

whose relationship is unclear.

4.2 Meta-Analytic Synthesis

The non-parametric analysis from Section 4.1 suffers from two potential pitfalls. First, all

estimates are given equal weight, even if the information available to us suggests that the

parameters computed in some studies are more reliable (i.e., more precisely estimated) than

than 0. As shown in the right-hand panel of Figure 6, a z-test reveals that 116 estimates are positive and
significantly (i.e., p-value < 0.05) different from 0, 16 estimates are indistinguishable from 0 and 12 estimates
are negative and significantly different from 0.
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Figure 7: Scatter Plot of Disadvantageous (α) and Advantageous Inequality (β) Coefficients.
Notes: We use the 140 estimates for which we have both a value for α and β; the vertical
axis is truncated at −0.4 for better visual rendering.

others. Second, estimates are assumed to be independent from one another, even if the

same source and experimental study provides multiple estimates which are likely correlated

with one another (e.g., because they are meant to capture the same subjects’ underlying

preferences). The econometric techniques adopted in this section tackle both issues.

In particular, we provide a meta-analytic estimation of a “weighted average” for α and

β. There are two possible methodological approaches to this task. The first approach is

a frequentist analysis that uses fixed- or random-effects (two-level or multi-level) models

to find an average for a parameter. The second approach is aggregating the data using a

Bayesian hierarchical model. We use both procedures and show that they return nearly

identical results. We present the frequentist analysis in this section while we refer the reader

to Appendix D for a detailed presentation of the Bayesian hierarchical model and its results.

Since there are two parameters, we have two options for how to conduct the meta-analytic

synthesis with the frequentist approach. We can either estimate two univariate models or a

single multivariate model that considers both parameters at the same time. While the latter

procedure is the first-best (since it takes into account the possible inter-dependency between

α and β), it is unfeasible in our case: we would need not only a measure for the variance of
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α and β but also a measure for their covariance, an information none of the studies in our

dataset provides. For this reason, we conduct two separate univariate meta-analysis, one for

α and one for β. While ignoring the dependence between the two variables might introduce

a bias in our results, we note that the non-parametric analysis from the previous subsection

suggests the correlation between α and β is weak and this reduces the concern. In Appendix

E, we present the results of a multivariate model, which we estimate under the assumption

that the covariance for each pair of parameters is 0.

We now describe our meta-analytic framework, which follows Imai, Rutter and Camerer

(2021). We start from the simplest fixed-effects model (which we do not estimate but provides

a building block for the ensuing discussion), continue with the two-level random-effects model

and conclude with the more sophisticated model, the multi-level random-effects model. From

this point on, our discussion of the methodology will focus on α, considering that the same

concepts and equations (up to replacing α with β) also apply to β.

The fixed-effects model assumes the following:

αj = α0 + ϵj, (3)

where αj is the jth parameter in the dataset, with j = {1, ..., k}, k being the total number of

estimates; and α0 being the “true” disadvantageous inequality parameter. The fixed-effects

model assumes that all the parameters in the dataset come from a single homogeneous pop-

ulation and the reason why the value of αj varies is because of sampling errors, represented

here by ϵj. It is assumed that ϵj ∼ N (0, v2j ), where v2j is the known sampling variance (i.e.,

the variance of the estimates). One way to get an estimate of α0 is then to compute a

weighted average of the αj, with weights given by their precision:

αFE
0 =

∑k
j=1 p

FE
j αj∑k

j=1 p
FE
j

(4)

21



where pFE
j = 1

v2j
. This equations says that parameters with a lower variance are given more

weight in the aggregation. Given its assumptions, a fixed-effects model performs well only

if there is no heterogeneity across studies, since the only reason for the parameters to differ

is due to sampling variance. If the studies are not homogeneous — as it is the case in our

dataset because different articles employ different subject populations, experimental tasks,

utility specifications, etc. — then a fixed-effects model would perform rather poorly.

Alternatively, we can estimate a two-level random-effects model (DerSimonian and Laird,

1986). This model assumes that:

αj = µj + ϵj (5)

µj = α0 + ξj. (6)

The observed parameter, αj, is an estimator of the study’s true effect size, µj, plus a sampling

error, ϵj. The true effect size, µj, comes from a homogeneous population with a “grand

mean”, α0, plus a second source of error, ξj, which is assumed to be distributed as ξj ∼

N (0, τ 2), where τ 2 captures between-observations heterogeneity. We can combine the two

equations above to get:

αj = α0 + ξj + ϵj (7)

This equation makes clear that ϵj is the sampling error for αj, which is an estimate for µj

(the true effect size). This is, in turn decomposed into the grand mean, α0, and the second

error term, ξj. If τ 2 = 0, meaning that there is no between-observations heterogeneity, the

two-level random-effects model coincide with the fixed-effects model. Endowed with this

model, we can get an estimate for α0 by taking again a weighted average of the form:

αRE
0 =

∑k
j=1 p

RE
j αj∑k

j=1 p
RE
j

, (8)

where, in this case, the weights are given by pRE
j = 1

v2j+τ̂2
, with τ̂ 2 being an estimate of τ 2. The
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weights take into account both the precision of the observed parameters and the between-

observation heterogeneity. The two-level random-effects model assumes that observations

are independent. In our dataset, this is most likely not the case, since many articles provide

more than one estimate — for example, by computing α and β using different econometric

approaches or utility function specifications. In order to account for the for the possible

correlation across estimates from the same study, we fit a random-effects model that uses

cluster-robust variance estimation at the study level.18

A third alternative is a multi-level random-effects model as in Konstantopoulos (2011)

and Van den Noortgate et al. (2013). A multi-level model is another way to handle estimates

that are statistically dependent. Denote with αij the jth estimate of parameter α from study

i. Then, the first level is defined as:

αij = µij + ϵij, (9)

where µij is the “true” effect size (in this case, the “true” disadvantageous inequality pa-

rameter) and the error term is distributed as ϵij ∼ N (0, v2ij). The second level is:

µij = θi + ξ
(2)
ij , (10)

where θi represents the average disadvantageous inequality in study i and ξ
(2)
ij ∼ N (0, τ 2(2)).

The last level is:

θi = α0 + ξ
(3)
i , (11)

where α0 is the population mean of α (what we are interested in) and ξ
(3)
i ∼ N (0, τ 2(3)). We

can combine the three levels into a single equation to have

αij = α0 + ξ
(2)
ij + ξ

(3)
i + ϵij. (12)

18We adopt the cluster-robust correction in Hedges, Tipton and Johnson (2010).
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Table 5: Meta-Analytic Average of Disadvantageous Inequality (α)

(1) (2) (3) (4)
Disadvantageous Inequality Coefficient (α0) 0.300 0.328 0.469 0.510

(0.089) (0.110) (0.084) (0.108)
p-value 0.002 0.006 < 0.0001 < 0.0001
τ̂ 2 0.338 0.391
I2 99.97 99.97
I2within 42.25 37.07
I2between 57.73 62.90
Observations 145 108 145 108
Model RE RE ML ML
Sample Full Restricted Full Restricted

Notes: Columns (1) and (3) estimate a two-level random-effects (RE) and multi-level
random-effects (ML) model on the full sample; columns (2) and (4) focus on studies with
reported (i.e., non-approximated) SEs; p-values are for a two-sided test with null hypothesis
H0 : α0 = 0; SEs in parenthesis are cluster-robust (Hedges, Tipton and Johnson, 2010); in
both RE and ML models, we use the restricted maximum likelihood method.

Compared to the two-level random-effects model, here there are two heterogeneity terms

in addition to the sampling error: ξ
(2)
ij represents the within-cluster heterogeneity, i.e., the

heterogeneity that is present among different estimates in a single study; ξ
(3)
i , instead, stands

for the between-cluster heterogeneity, with a large value for τ 2(3) indicating that the “true”

disadvantageous inequality parameter varies a lot between different studies.19

Before fitting the two-level and the multi-level random-effects models described above,

we run some diagnostic checks to exclude potentially “overly influential” observations by

computing DFBETAS (Belsley, Kuh and Welsch, 1980), which measure the effect of dropping

one observation on a regression coefficient. We use the classification in Bollen and Jackman

(1985) and identify an observation to be influential if |DBETAS| > 1. Since none of the

coefficients exceed the threshold, we do not remove any observation from the analysis.

19The three-level model assumes that, conditional on being in the same study, the parameters are inde-
pendent. In equation (12), this implies that Cov(ϵij , ϵih) = 0 for every estimate j ̸= h in study i. Thus,
in this model, the only source of dependence between parameters from the same study is the true value
parameter and not the estimation error. The Correlated Hierarchical Effects (CHE) model proposed in
Pustejovsky and Tipton (2022) extends the three-level model by allowing estimates from the same study to
have correlated estimation errors, i.e. Cov(ϵij , ϵih) = ρv2i , where ρ is assumed to be a constant and common
correlation coefficient between estimates from the same study i and v2i = 1

ni

∑ni

j=1 v
2
ij .
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Tables 5 and 6 report the results of the meta-analytic synthesis. In discussing these

results, we focus on the estimates obtained in the full sample, that is, without removing

studies whose SEs we had to approximate. Results for the restricted sample of studies

with reported SEs are available in the same tables and are qualitatively identical. Starting

with the disadvantageous inequality parameter (α), both the two-level and the multi-level

random-effect specifications return an estimate that is positive and significantly different

from zero. Our meta-analysis, thus, supports the hypothesis that people are concerned

about equity when they are in a disadvantageous situation. The coefficient in the two-

level model is 0.3 while the coefficient in the multi-level model is 0.469. The difference

between the two specifications is due to the fact that many estimates come from a single

paper — for example, Alger and van Leeuwen (2021) report 21 values for α. Even if the

cluster-robust SEs try to address this issue, the results from the two-level model might be

driven by these observations. Both estimates are smaller than the average value from the

distribution reported in FS (0.850). From the I2 statistics (Higgins and Thompson, 2002),

we learn that nearly all of the variability (99.97%) in the two-level random-effects model is

due to between observations heterogeneity rather than sampling variance.20 In the multi-

level model, instead, around 42.25% of the variability in the data is due to heterogeneity

within studies (I2within), 57.73% to heterogeneity across studies (I2between) and the remainder

to sampling variance.

The meta-analytic average of β in the two-level random-effects model is 0.282, smaller

than in the multi-level specification for the same reason discussed above. In our preferred

specification with a multi-level random-effects model, the estimate of β is 0.331. In both

cases, the estimates are statistically different from zero at any conventional significance level.

This value is in line with the weighted average and the median of β from the distribution

reported in FS (0.315 and 0.290). We, thus, find evidence of equity concerns in the realm

of advantageous situations. The I2 statistics shows that, in the two-level random-effects

20The I2 statistics is computed as I2 = 100
(

τ̂2

τ̂2+s2

)
where s2 =

(k−1)
∑

pj

(
∑

pj)2+
∑

p2
j
with pj =

1
v2
j
.
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Table 6: Meta-Analytic Average of Advantageous Inequality (β)

(1) (2) (3) (4)
Advantageous Inequality Coefficient (β0) 0.282 0.232 0.331 0.322

(0.061) (0.057) (0.031) (0.036)
p-value < 0.0001 0.002 < 0.0001 < 0.0001
τ̂ 2 0.060 0.047
I2 99.45 98.97
I2within 33.16 32.79
I2between 66.07 66.03
Observations 144 103 144 103
Model RE RE ML ML
Sample Full Restricted Full Restricted

Notes: Columns (1) and (3) estimate a two-level random-effects (RE) and a multi-level
random-effects (ML) model on the full sample; columns (2) and (4) focus on studies with
reported (i.e., non-approximated) SEs; p-values are for a two-sided test with null hypothesis
H0 : β0 = 0; SEs in parenthesis are cluster-robust (Hedges, Tipton and Johnson, 2010); in
both RE and ML models, we use the restricted maximum likelihood method.

specification, 99% of the variability in β can be attributed to between observations hetero-

geneity; in the multi-level model, instead, around 33.16% of the variability is due to within

study heterogeneity and around 66.07% to between studies heterogeneity. Finally, while the

theoretical assumptions in FS hold in our meta-analysis, since α ≥ β and 0 ≤ β < 1, we

cannot claim that the estimate of α is statistically greater than the estimate of β.

4.3 Explaining Heterogeneity

The estimates in our dataset come from studies that are very different from each other,

for example, because of the subject population, the tasks subjects performed during the

experiment, the utility function that was assumed in the estimation procedure and so on. It

is then far fetched that the estimates for α and β depend mainly on sampling errors, either

at the observation or study level, as we did previously. In order to explain the heterogeneity,

we add to the multi-level specification described in equation (12) a set of regressors:

αij = α0 + δXij + ξ
(2)
ij + ξ

(3)
i + ϵij. (13)
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Table 7: Explaining Heterogeneity

Disadvantageous Inequality (α) Advantageous Inequality (β)

(1) (2) (3) (4) (5) (6) (7) (8)

Strategic 0.593∗∗∗ −0.138∗∗

(0.198) (0.058)

Non Students 0.104 0.009

(0.176) (0.067)

North Europe 0.333∗ −0.201∗∗

(0.190) (0.079)

USA 0.178 −0.198∗∗

(0.218) (0.078)

China -0.124 -0.011

(0.199) (0.194)

Online 0.016 0.040

(0.198) (0.090)

Constant 0.239∗∗∗ 0.442∗∗∗ 0.265∗ 0.467∗∗∗ 0.369∗∗∗ 0.328∗∗∗ 0.482∗∗∗ 0.324∗∗∗

(0.084) (0.102) (0.134) (0.096) (0.035) (0.037) (0.067) (0.033)

Observations 145 145 142 145 144 144 141 144

Notes: SEs in parenthesis are cluster-robust (Hedges, Tipton and Johnson, 2010). ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.

where Xij is a set of moderator variables coded in our dataset. Given the high amount of

coded variables and the few observations for some of these, it is unclear what model should

we use to explain the heterogeneity in the parameters. We then run four different regressions

with parsimonious models that only include one moderator variable at a time.

Since Xij is composed of dummy variables, each coefficient represents the shift of the pop-

ulation mean α0 with respect to the baseline condition. The meta-regressions for α and β are

presented in Table 7. A positive coefficient indicates more sensitivity (i.e., stronger aversion)

to disadvantageous or advantageous inequality compared to the baseline condition: and we

chose the baseline conditions as follows: for the experimental task (columns 1 and 5), the

omitted category is individual decision-making tasks; for the subject population (columns

2 and 6), the omitted category is college students (and we pool non-representative samples
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of adults and representative samples in the non-students category); for geographic location

(columns 3 and 7), the omitted category is Southern Europe; and for experimental imple-

mentation (columns 4 and 8), the omitted variable is in-person (where we pool laboratory

and classroom experiments).21

While we have a small number of observations for some categories and should thus be

cautious in inferring too much from these coefficients, we nonetheless highlight some in-

teresting patterns. First, while α and β are both positive and significantly different from 0

regardless of whether they are estimated with games or individual choices, the meta-synthetic

averages are strongly affected by the experimental task (see also Figure 8): sensitivity to

disadvantageous inequality is stronger in strategic environments than in individual decision-

making tasks while the reverse is true for sensitivity to advantageous inequality. Therefore

— since both parameters are strictly positive and, thus, capturing inequality aversion in both

environments — strategic environments dampen the guilt from being ahead in social com-

parisons and, at the same time, they enhance the envy from being behind. As conjectured

in Fehr, Naef and Schmidt (2006), this suggests that efficiency motives (inducing individuals

to values others’ payoff positively) may be weakened by the competitive nature of strategic

environments, where participants tend to view themselves as opponents rather as partners.

Second, populations of college students are not different from other subject populations and

participation in person to laboratory and classroom experiments does not affect estimates

with respect to experiments conducted remotely. Third, participants from Southern Eu-

rope (France, Italy, Spain, and Turkey) are less averse to disadvantageous inequality than

participants from Northern Europe (Denmark, Germany, Netherlands, Sweden, Switzerland

and UK) and more averse to advantageous inequality than participants from both Northern

21When the same study offers to our dataset both estimates computed in strategic environments and
estimates computed in individual-decision making environments (Yang, Onderstal and Schram 2016 and Diaz,
Houser, Ifcher and Zarghamee 2021), we consider the two estimates as coming from two different studies. This
allows for a crispier analysis of estimates’ heterogeneity in this dimension, with results similar to those we
obtain when estimating a multi-level random-effects model on two sub-samples, one for estimates computed
in strategic environments and one for estimates computed in individual-decision making environments (see
Appendix F).
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Europe and the US.

4.4 Identifying Selective Reporting and Publication Bias

One aspect to keep in mind when conducting a meta-analysis is the problem of selective

reporting or publication bias. The main concern arises when a theory strongly predicts

certain results — for example, the magnitude or significance of some statistical relationships

— and the literature anchors itself towards the same findings. This causes problems when,

for example, new evidence reporting “unusual” or “unconventional” results is not taken

in consideration because it goes against this norm. Articles are, then, either rejected and

not published in journals or simply not written to begin with (the “file-drawer” problem).

Beyond biases in the publication process, there are other sources of selective reporting that

go from conscious frauds to more morally gray actions like “p-hacking”.

In order to gauge the occurrence of publication bias in studies estimating other-regarding

preferences parameters, we first look at funnel plots. Funnel plots are scatter plots of the

parameter estimates and of their SEs. The idea is that estimates with a higher precision

should lie close to the meta-synthetic mean of the parameters, while estimates far from this
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Figure 9: Funnel Plots of Disadvantageous (α) and Advantageous Inequality (β) Coefficients.
Notes: The vertical continuous line is at the meta-analytic average from column (3) in Tables
5 and 6 (α = 0.469 and β = 0.331) and the diagonal dotted curves represent a p-value of
0.05 for a z-test whose null hypothesis is that the estimate is equal to the meta-analytic
average (i.e., estimates below each dotted line are statistically different from this average).
The horizontal axis is truncated at 2.2 (α) and −0.6 (β) for better visual rendering. Only
those estimates with reported SEs are included.

mean should show a lower precision. Without selective reporting, we expect to see a funnel-

shaped distribution which is symmetric around the “average” parameter value. An absence

of symmetry can hint to “missing” studies and so to the presence of publication bias. Figure

9 shows the funnel plots for the advantageous and disadvantageous inequality coefficients.

The distribution for α looks highly asymmetric: observations with a negative (and large in

magnitude) value of α which is imprecisely estimated are “missing”. A similar, albeit more

attenuated, effect is present also for β: there are no studies reporting a large and imprecisely

estimated positive value of this coefficient.

A second approach to detect selective reporting is the FAT-PET procedure, which consists

in regressing the parameters on their SEs. If there is no publication bias, the reported

estimates should be uncorrelated with the SEs. We then estimate the two following equations:

αij = α0 + δSEij + ξ
(2)
ij + ξ

(3)
i + ϵij. (14)

βij = β0 + γSEij + ν
(2)
ij + ν

(3)
i + ηij. (15)

In this model, δ and γ capture the degree of selective reporting bias while α0 and β0 represent
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Table 8: FAT-PET Analysis

α β
(1) (2) (3) (4)

Constant 0.340 0.192 0.404 0.400
(0.075) (0.067) (0.037) (0.043)

Standard Errors 1.580 3.039 -2.027 -2.260
(0.590) (0.646) (0.762) (0.772)

p-value < 0.0001 0.008 < 0.0001 < 0.0001
I2within 6.77 8.07 32.77 31.41
I2between 93.18 91.82 66.45 67.46
Observations 143 106 144 102
Model ML ML ML ML
Sample Full Restricted Full Restricted

Notes: All columns estimate a multi-level random-effects model with the restricted max-
imum likelihood method; columns (2) and (4) focus on studies with reported (i.e., non-
approximated) SEs; p-values are for a two-sided test with null hypothesis H0 : Con-
stant = 0; SEs in parenthesis are cluster-robust (Hedges, Tipton and Johnson, 2010);
for columns (1) and (2), two estimates from Diaz et al. (2021) were omitted because
|DFBETAS| > 1; for column (4), one estimate from Bellemare et al. (2008) was removed
because |DFBETAS| > 1.

the selection-bias-corrected value of the parameters. This exercise tests at the same time for

asymmetry in the funnel plots (FAT; Egger et al. 1997; Stanley 2005; Stanley and Doucou-

liagos 2017) and for a “true effect” of the parameters beyond publication selection (PET).

As reported in Table 8, the coefficient for δ is positive and statistically significant, while the

coefficient for γ is negative and statistically significant (δ = 1.580 with p-value= 0.011 in

the full sample; γ = −2.027 with p-value= 0.011 in the full sample). At the same time, the

constants, α0 and β0, are positive and highly significant (both in the full and in the restricted

sample), indicating the presence of both disadvantageous and advantageous inequity aver-

sion even after correcting for possible publication bias: the publication-bias-corrected 95%

confidence intervals for α and β are, respectively, [0.188, 0.492] and [0.33, 0.478].

We note that the asymmetry in the funnel plots could be generated also in the absence

of publication bias — for example, because of constraints in the estimation of α and β when
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Figure 10: Distribution of z-statistics, top-panels, and p-curves, bottom-panel, of Disadvan-
tageous inequality (α) and Advantageous Inequality (β). Notes: in both figures the test is
the null hypothesis of α = 0 or β = 0; red vertical lines are at -1.96 and 1.96. Only those
estimates with reported SEs are included.

eliciting these parameters with the experimental tasks typically employed by the literature.22

Moreover, while the funnel plot procedure assumes that the two parameters can take any

value, some values are more plausible than others since these coefficients are meant to capture

social preferences. In particular, it would be surprising to find values of α smaller than −1

and values of β larger than 1, which imply that an individual is willing to burn money just

to increase the gap in outcomes when behind or just to reduce the gap when ahead. Indeed,

the 145 estimates of α and the 144 estimates of β in our dataset never take values beyond

those thresholds and this can hardly be deemed proof of publication bias.

Another form of publication bias consists in the practice of p-hacking. Journals might be

biased in publishing statistically significant results and, in turn, researchers might be tempted

22For example, the ultimatum and dictator games used in Blanco, Engelmann and Normann (2011) lead
to feasible estimates in the following ranges: α ∈ [0, 4.5] and β ∈ [0, 1].
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to push analyses just below a threshold (e.g., a p-value of 5%) by, for example, changing

econometric specification or the number of covariates in a regression. Two tools employed

in the literature to detect publication bias in the form of p-hacking are the histograms of

z-statistics and the p-curve (Simonsohn, Nelson and Simmons, 2014). Under the presence

of p-hacking, we would see a bunching of z-statistics right above the threshold of statistical

significance at the 5% level, i.e., |1.96|. This is because researchers who obtain z-statistics

just below this value have an incentive to push it right above, thus creating a discontinuity

around |1.96| in the histograms. From the top panels of Figure 10, we see a jump just above

1.96 in the histogram for the disadvantageous inequality parameter and a jump right below

−1.96 in the histogram for the advantageous inequality parameter. While this could suggest

the presence of p-hacking (with researchers pushing statistical significance above 5% to show

that α is greater than zero and that β is less than zero), we must note that we have very

few observations around the |1.96| cutoff making this far from a conclusive proof.

The p-curve looks, instead, at the distribution of statistically significant p-values. Under

the null hypothesis — which, in our case, is that the parameter is equal to zero — the

expected distribution of statistically significant p-values is a uniform (by the definition of

p-values) and we expect to see a flat p-curve. If the null hypothesis is false (that is, the

parameter is different from zero) and researchers do not engage in p-hacking, we expect to

see a right-skewed distribution, since researchers are more likely to find and to report small

p-values rather than large ones. If the null hypothesis is true but researchers do engage

in p-hacking, researchers try to turn non-significant results into significant ones and, most

likely, they stop as soon as they reach this goal. In this case, we expect to see a left-skewed

distribution, since researchers add to the true flat distribution of statistically significant p-

values, observations that are pushed just above the 5% significance threshold. The bottom

panels of Figure 10 show that the p-curves for both α and β are highly right-skewed, thus

strongly supporting the hypothesis that the parameters are different from zero and the
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absence of p-hacking.23

5 Conclusion

In this paper, we reported the results of a meta-analysis of empirical estimates of outcome-

based other-regarding preferences à la Fehr and Schmidt (1999). We conduct both a fre-

quentist analysis (using a multi-level random-effects model) and a Bayesian analysis (using

a Bayesian hierarchical model) to provide a “weighted average” for sensitivity to disadvan-

tageous inequality (α) and sensitivity to advantageous inequality (β). The results from the

two approaches are nearly identical and support the hypothesis of inequality concerns. From

the frequentist analysis, we learn that the mean sensitivity to disadvantageous inequality is

0.469 with a 95% confidence interval of [0.298, 0.639]; the mean sensitivity to advantageous

inequality coefficient is, instead, 0.331 with a 95% confidence interval [0.269, 0.393].24 This

means that, on average, individuals feel guilt and are willing to pay $0.49 to increase others’

earnings by $1 when ahead; and that they feel envy and are willing to pay $0.87 to decrease

others’ earnings by $1 when behind.25 The theoretical assumptions originally made in FS —

that is, α ≥ β and 0 < β < 1 — are upheld in our empirical analysis, but we cannot conclude

that the disadvantageous inequality coefficient is statistically greater than the coefficient for

advantageous inequality. We also observe no correlation between the two parameters in our

dataset.

Our analysis suggests two avenues for further research on social preferences. First, while

this is not always a clean comparison (since studies conducted in different countries differ

also in other dimensions), the analysis of heterogeneity in Section 4.3 shows that participants

23While a useful instrument to detect p-hacking, the p-curve is not a definitive test. For example, if
studies are well powered, the p-curve is right-skewed even in the case of a true null and mild p-hacking.
Moreover, we note that some of the assumptions in (Simonsohn et al., 2014) are not satisfied in our data:
many studies do not test directly the null hypothesis that the parameter is equal to zero and not all p-values
come from independent studies.

24In the Bayesian analysis, the mean envy coefficient is 0.467 with a 95% probability that the true value
lies in the interval [0.302, 0.642]; the mean guilt coefficient is, instead, 0.331 with a 95% probability that the
true value lies in the interval [0.266, 0.396].

25These WTPs are computed as β/(1− β) when ahead and α/(1− α) when behind.
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from Southern Europeans are more sensitive to advantageous inequality than participants

from Northern Europe and the US. The variation of inequality aversion across (and within)

countries should be explored in experimental studies which allow the estimation of parame-

ters using the same methodology and reaching participants from a wider set of countries and

cultures. Second, the sensitivity of the estimates to the experimental task (strategic versus

non-strategic) points to the inter-dependency between different facets of social preferences

and to the crucial role played by the decision environment in making one more salient than

others. We believe that studying outcome-based social preferences (e.g., inequality aversion),

intention-based social preferences (e.g., reciprocity), and image concerns in the same theo-

retical framework and designing experiments which allow the joint estimation of parameters

from these models is an important step for a better understanding of social preferences.
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Hsu, and Xiaolin Zhou, “Distinguishing Neural Correlates of Context-dependent
Advantageous- and Disadvantageous-inequity Aversion,” Proceedings of the National
Academy of Sciences, 2018, 115 (33): E7680-E7689.

33. Bruhin, Adrian, Ernst Fehr, Daniel Schunk, “The Many Faces of Human Social-
ity: Uncovering the Distribution and Stability of Social Preferences,” Journal of the
European Economic Association, 2019, 17(4): 1025–1069.

34. Müller, Stephan, and Holger A. Rau, “Decisions under Uncertainty in Social
Contexts,” Games and Economic Behavior, 2019, 116: 73–95.

35. Kerschbamer, Rudolf, and Daniel Müller, “Social Preferences, Political Opinions
and Charitable Giving: An Online Experiment on a Large Heterogeneous Sample,”
Journal of Public Economics, 2020, 182.

36. Alger, Ingela, and Boris van Leeuwen, “Estimating Social Preferences and Kan-
tian Morality in Strategic Interactions,” Unpublished Manuscript, 2021.

37. Diaz, Lina, Daniel Houser, John Ifcher, and Homa Zarghamee, “Estimating
Social Preferences Using Stated Satisfaction: Novel Support for Inequity Aversion,”
Unpublished Manuscript, 2021.

46



38. Hedegaard, Morten, Rudolf Kerschbamer, Daniel Müller, and Jean-Robert
Tyran, “Distributional Preferences Explain Individual Behavior across Games and
Time,” Games and Economic Behavior, 2021, 128: 231–255.

39. Carpenter, Jeffrey, and Andrea Robbett, “Measuring Socially Appropriate Social
Preferences,” Unpublished Manuscript, 2022.

40. Sabater-Grande, Gerardo, Aurora Garćıa-Gallego, Nikolaos Georgantźıs,
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Table 9: List of Coded Variables in the Dataset

Variable Description
study id ID for the 42 studies in the analysis (from 1 to 42)
paper title Title of the paper
authors Authors’ first and last names
paper code First author’s last name + et al. + year
is published = 1 if the paper is published
year published Year published or last revisited if working paper
journal Journal
paper length Length of the paper (appendix excluded)
affiliations Affiliations of the authors
is lab = 1 if laboratory experiment
is online = 1 if online experiment
is classroom = 1 if classroom experiment
loc exp country Country location of the experiment
loc exp contintent Continent location of the experiment
is uni = 1 if university students population
is adults = 1 if adults population (not general or in university)
is general = 1 if general population
reward money = 1 if monetary reward
strategic alpha = 1 if α elicited in a strategic game
strategic beta = 1 if β elicited in a strategic game
games alpha Games used to elicit α
games beta Games used to elicit β
game1-game4 All games played in the experiment
utility function Utility function specification used
econometric strategy Econometric strategy
estimation method Estimation method used
alpha Disadvantageous inequality coefficient (α)
alpha se SE of α
alpha sd SD of α
beta Advantageous inequality coefficient (β)
beta se SE of β
beta sd SD ofβ
type se Type of SE (reported, from SD, from reg)
type sd Type of SD (reported, computed)
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n Sample size
is aggregate = 1 if aggregate estimates
is individual = 1 if individual-level estimates
is mean = 1 if individual-level mean
is median = 1 if individual-level median
is finite mix = 1 if finite-mixture estimates
p1-p4 mixture probabilities if finite-mixture
p1 se-p4 se SEs of p1 − p4 if finite-mixture
alpha1-alpha4 Alpha coefficients if finite-mixture
alpha1 se-alpha4 se SEs of α1 − α4 if finite-mixture
beta1-beta4 Beta coefficients if finite-mixture
beta1 se-beta4 se SEs of β1 − β4 if finite-mixture
t-stat t-statistics of the estimate
is other param = 1 if other parameters are estimated
other param Names of other parameters
other info Other information on the paper
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C Experimental Tasks Used To Elicit Parameters

Table 10: Experimental Tasks and Classification as Strategic

Experimental Tasks Used To Elicit Parameters Strategic Environment
Disadvantageous Inequality Coefficient (α)
Bargaining game Yes
Choice menus No
Dictator game No
Equality equivalence test No
Gift exchange game Yes
Inequality list No
Modified dictator game No
Non strategic ultimatum game No
Random ultimatum game Yes
Sequential prisoner dilemma Yes
Sequential public good game Yes
Stackelberg game Yes
Trust game Yes
Ultimatum game Yes
Advantageous Inequality Coefficient (β)
Bargaining game Yes
Choice menus No
Dictator game No
Equality equivalence test No
Gift exchange game Yes
Inequality list No
Modified dictator game No
Random ultimatum game Yes
Sequential prisoner dilemma Yes
Sequential public good game Yes
Stackelberg game Yes
Trust game Yes
Ultimatum game Yes
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D Meta-Analysis with Bayesian Hierarchical Model

Here, we explain now the modelling framework of the Bayesian hierarchical model. We

will use in the examples the variable α, but the same applies also to β. Consider the

dataset (αj, se
2
i )

k
j=1, where k is the total number of estimates and αj the jth observation of

the disadvantageous inequality parameter, with its associated standard error sej. We then

assume that the reported estimate αj is distributed normally around the parameter ᾱj:

αj|ᾱj, sej ∼ N (ᾱj, se
2
j)

The variability around ᾱj is due to the sampling variation captured by the standard errors

sej. As in a frequentist random-effects model, we can assume that the sampling variation is

not the only source of variability for the estimates, since there could be heterogeneity across

measurements due to different settings like subject population, games played etc. This can

be modeled by assuming that each ᾱj is normally distributed, adding a second layer to the

hierarchy:

ᾱj|α0, τ ∼ N (α0, τ
2)

where α0 is the overall mean of the disadvantageous inequality parameters ᾱj, and τ 2 repre-

sents the genuine variability across studies. Combining the two expression we get:

αj|α0, τ, sej ∼ N (α0, τ
2 + se2j)

with this formulation being identical to the formulation in the random-effects meta-analysis

we explained in the results section:

αj = ᾱj + ϵj = α0 + ξj + ϵj

In Bayesian hierarchical models, each observation, ᾱj, is pooled towards the overall mean

with strength depending on the precision of the estimate and on how far the estimate is from

the α0. The pooling equation can be written as follows:

ᾱj = (1− ωj)αj + ωjα0

where ωj is the “pooling factor” (Gelman and Pardoe, 2006), defined as:

ωj =
se2j

τ 2 + se2j
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All others things considered, the more an estimate is imprecise, captured by sej, the more

it will be pooled towards the overall mean. The same effect also happens when τ 2 is low,

meaning that if there is low heterogeneity across studies, more weight will be given to α0.

We now summarize and estimate the model expressed above. We estimate the model in

Stan (Carpenter et al., 2017) using the Hamiltonian Monte Carlo simulations and launch it

from R (https:// www.r-project.org/) using RStan (Stan Development Team, 2021).

The models we fitted for α and β are the following:

αj|ᾱj, sej ∼ N (ᾱj, se
2
j)

ᾱj|α0, τ ∼ N (α0, τ
2)

α0 ∼ N (0.25, 1)

τ ∼ halfN (0, 1)

βj|β̄j, sej ∼ N (β̄j, se
2
j)

β̄j|β0, τ ∼ N (β0, τ
2)

β0 ∼ N (0.25, 1)

τ ∼ halfN (0, 1)

The priors for the population parameters are mildly regularizing, meaning that they are

informative but are chosen in such a way to have a weak effect in the procedure. Looking,

for example, at the prior for α0 and by using the three sigma-rule of thumb, what the prior

is saying is that our initial opinion for the true value of α0 is that the parameter lies between

−1.75 and 2.25 with 95% probability. The procedure is not sensitive to the priors we use as

long as they are weakly informative.

Looking at the results for the disadvantageous inequality parameter, we observe a mean

value for α0 of 0.301, with a 95% credible interval between [0.201, 0.401]. The frequentist

random-effects model returns a value for α0 of 0.300 with a 95% confidence interval between

[0.198, 0.401]. As we can see the two values are nearly identical, and the same happens for

the estimate of τ̂ 2 with a mean value in the Bayesian procedure of 0.345 and of 0.338 in the

frequentist approach.
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Figure 11: The first figure shows the 1,500 draws for α0 and τ in the four Markov Chain
after the warmup, showing good convergence of the procedure. The second figure shows the
posterior distributions of the two parameters. Shaded blue areas correspond to 95% credible
intervals.

Table 11: Summary of the Bayesian Hierarchical Model Estimate for α

Parameter Rhat ESS Mean SD 2.5% 25% 50% 75% 97.5%

α0 1.000 14723 0.301 0.051 0.201 0.267 0.300 0.335 0.401

τ̂ 1.000 10594 0.587 0.039 0.515 0.559 0.585 0.612 0.669

Notes: Rhat is a measure of good convergence of the Markov Chains. As a rule of thumb
it should be between 0.9 and 1.05. ESS stands for effective sample size and represents the
theoretical number of independent draws. We run four different chains with 3,000 draws
each and a warmup of 1,500 draws.

Now looking at the results for the advantageous inequality parameter, we once again

observe very similar results between the Bayesian and frequentist methods. The mean value

for β0 is 0.282, the same as in the random-effects model. The estimates of τ̂ 2 are equal, with

a mean value in the Bayesian procedure of 0.06 and of 0.06 in the frequentist approach.

Table 12: Summary of the Bayesian Hierarchical Model Estimate for β

Parameter Rhat ESS Mean SD 2.5% 25% 50% 75% 97.5%

β0 1.000 7023 0.282 0.021 0.237 0.268 0.282 0.296 0.323

τ̂ 1.000 5649 0.248 0.017 0.218 0.237 0.248 0.259 0.282
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Figure 12: The first figure shows the 1,500 draws in the four Markov Chain after the warmup,
showing good convergence of the procedure. The second figure shows the posterior distribu-
tions of β0 and τ . Shaded blue areas correspond to 95% credible intervals.

The model we just estimated does not take into account the possible correlation among

estimates that come from the same study. One way to solve this problem is to introduce a

paper level in the hierarchical model as follows:

αpj|ᾱpj, sepj ∼ N (ᾱpj, se
2
pj)

ᾱpj|ᾱp, σp ∼ N (ᾱp, σ
2
p)

ᾱp|α0, τs ∼ N (α0, τ
2
s )

α0 ∼ N (0.25, 1)

τ ∼ halfN (0, 1)

σp ∼ halfN (0, 1)

βpj|β̄pj, sepj ∼ N (β̄pj, se
2
pj)

β̄pj|β̄p, σp ∼ N (β̄p, σ
2
p)

β̄p|β0, τ ∼ N (β0, τ
2)

β0 ∼ N (0.25, 1)

τ ∼ halfN (0, 1)

σp ∼ halfN (0, 1)

where now we introduced paper level means of the parameters in a single study, ᾱp. These

models for α and β resemble the multi-level frequentist approach discussed in details in the

main body of the paper.
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The Bayesian procedure returns a mean disadvantageous inequality coefficient of 0.467,

with a 95% probability that the true value falls in the interval [0.302, 0.642]. This is in

line with what we found in the frequentist analysis, with an estimate for α of 0.469 and a

confidence interval of [0.298, 0.539].

Table 13: Summary of the Bayesian Hierarchical Model Estimate for α with paper level

Parameter Rhat ESS Mean SD 2.5% 25% 50% 75% 97.5%

α0 1.000 7834 0.467 0.087 0.302 0.409 0.467 0.524 0.642

τ̂ 1.000 4556 0.471 0.079 0.332 0.416 0.466 0.519 0.642
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Figure 13: The first figure shows the 1,500 draws in the four Markov Chain after the warmup,
showing good convergence of the procedure. The second figure shows the posterior distribu-
tions of α0 and τ . Shaded blue areas correspond to 95% credible intervals.

Now discussing β, the Bayesian procedure returns a mean advantageous inequality coef-

ficient of 0.331, with a 95% probability that the true value falls in the interval [0.266, 0.396].

Once again, this is in line with what we found in the frequentist analysis, with an estimate

for β of 0.331 and a confidence interval of [0.269, 0.393].

Table 14: Summary of the Bayesian Hierarchical Model Estimate for β with paper level

Parameter Rhat ESS Mean SD 2.5% 25% 50% 75% 97.5%

β0 1.000 8857 0.331 0.033 0.266 0.309 0.331 0.352 0.396

τ̂ 1.000 6521 0.176 0.025 0.133 0.159 0.174 0.192 0.231
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Figure 14: The first figure shows the 1,500 draws in the four Markov Chain after the warmup,
showing good convergence of the procedure. The second figure shows the posterior distribu-
tions of α0 and τ . Shaded blue areas correspond to 95% credible intervals.

We provide here a table with a sensitivity analysis on the priors chosen for the bayesian

models by looking at the average of the parameters and their 95% credible intervals in the

different specifications.

Table 15: Sensitivity Analysis on Priors for the Random Effects Model

Prior Disadvantageous Inequality (α0) Advantageous Inequality (β0)

sd = 2, ϕp = 0.25 0.300 [0.205,0.397] 0.282 [0.240,0.324]

sd = 0.5, ϕp = 0.25 0.299 [0.206,0.394] 0.282 [0.239,0.323]

sd = 1, ϕp = 0 0.299 [0.204,0.396] 0.282 [0.240,0.323]

Average 95% Credible Average 95% Credible

Table 16: Sensitivity Analysis on Priors for the Multi-Level Model

Prior Disadvantageous Inequality (α0) Advantageous Inequality (β0)

sd = 2, ϕp = 0.25 0.468 [0.300,0.643] 0.330 [0.267,0.393]

sd = 0.5, ϕp = 0.25 0.461 [0.302,0.624] 0.330 [0.271,0.391]

sd = 1, ϕp = 0 0.466 [0.295,0.647] 0.330 [0.267,0.392]

Average 95% Credible Average 95% Credible

Notes: sd is the standard deviation used for all priors. ϕp is the mean of the normal prior
on the parameter, for both α and β.
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E Multivariate Meta-Analysis

The standard approach when doing meta-analysis of studies that report multiple effects sizes

is to consider each effect size independent of the others and conduct univariate analysis,

one for each effect size. Univariate meta-analysis are simple to implement and interpret,

but this approach completely disregards possible within-study and between-study outcome

correlations that can have a potentially relevant effect on the estimates and their SEs.

The alternative approach is to implement a multivariate meta-analysis by explicitly mod-

elling outcome correlations. While multivariate models are theoretically the first-best, since

they can always nest univariate models, they are more difficult and time-consuming to esti-

mate. Moreover, some studies (Trikalinos et al., 2014; Berkey et al., 1998; Ishak et al., 2008)

find little to no effect on the parameter estimates between univariate and multivariate meta-

analysis, thus supporting the idea of simply using the easier univariate model. Other studies

(Riley et al., 2007; Kirkham et al., 2012) find instead a difference between univariate and

multivariate estimates, and they argue that a multivariate approach is the correct procedure

when dealing with multiple effect sizes in the same study.

Another problem in conducting a multivariate meta-analysis is the need to not only have

a measure of the effect sizes and their SEs, but also of their correlation (or covariance), and

this information is often not reported. Ishak et al. (2008) suggest that the correlation can be

ignored without too much risk of introducing a bias in the analysis, but Riley (2009) finds

that this was not true in the studies he analyzed. Nonetheless this is the approach we take

in this paper since we do not have in our dataset a measure of the correlation for α and β.

The specification for the multivariate random-effects model applied in our dataset of

inequality sensitivity estimates is the following:

(
αj

βj

)
∼ N

{(
µα
j

µβ
j

)
, Rj

}
, Rj =

[
SE2

aj 0

0 SE2
bj

]

(
µα
j

µβ
j

)
∼ N

{(
α0

β0

)
, D

}
, D =

[
D2

a DaDbρD

DaDbρD D2
b

]

Where similarly to the univariate model, we assume that the observed parameters (αj, βj)

are distributed around the true effect sizes (µα
j , µ

β
j ), with known variance-covariance matrix

Rj. The diagonal elements are the variance for α and β which are known, while we assumed

zero covariance to be able to estimate the model. The true effect sizes are then distributed
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as a bivariate normal with means (α0, β0) and variance-covariance matrix D.

To handle statistically dependent estimates we can add another level to the hierarchy to

capture both within-study and between-study heterogeneity, thus getting a multivariate and

multi-level specification:

(
αij

βij

)
∼ N

{(
µα
ij

µβ
ij

)
, Rj

}
, Rj =

[
SE2

aij 0

0 SE2
bij

]

(
µα
ij

µβ
ij

)
∼ N

{(
θαi

θβi

)
, Ci

}
, Ci =

[
C2

aij CaijCbijρC

CaijCbijρC C2
bij

]

(
θαi

θβi

)
∼ N

{(
α0

β0

)
, D

}
, D =

[
D2

a DaDbρD

DaDbρD D2
b

]

Where the observed parameters (αij, βij) are distributed around the true effect sizes

(µα
ij, µ

β
ij), the true effect sizes around paper-level means (θαi , θ

β
i ) and the latter around the

population means (α0, β0). In this multivariate multi-level model we are estimating in addi-

tion to the variance of the within and between study errors for α and β, also their correla-

tion/covariance.

We report the results of the multivariate random-effects and multivariate multi-level

random-effects models in both the full and restricted sample in Table 17. Looking at the

latter model we observe an estimate of the average disadvantageous inequality parameter

equals to 0.461, which is very close to the one obtained in the univariate specification. The

average advantageous inequality parameter is instead estimated to be equal to 0.325, slightly

lower than the 0.331 found in the univariate case. Also SEs are practically identical.

Estimating both parameters at the same time allows us to correctly test the null hy-

pothesis of α0 − β0 = 0. The t-test statistic and its p-value in the multivariate multi-level

specification confirm that the two parameters are not statistically different from zero (p-

value=0.147).
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Table 17: Meta-Analytic Average of Disadvantageous Inequality (α) and Advantageous
Inequality (β)

RE Full RE Restricted ML Full ML Restricted

Disadvantageous Inequality (α0) 0.293 0.320 0.461 0.503

(0.051) (0.064) (0.088) (0.116)

Advantageous Inequality (β0) 0.277 0.234 0.325 0.323

(0.022) (0.022) (0.031) (0.036)

p-value α0 < 0.0001 < 0.0001 < 0.0001 < 0.0001

p-value β0 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Observations 140 103 140 103

Notes: The first and the third columns estimate a multivariate random-effects and multi-
variate multi-level random-effects model on the full sample. The columns in even positions
consider only the observations with reported SEs. In both random effects and multi-level
models the restricted maximum likelihood method is used.
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F Non-Strategic vs Strategic Environment

F.1 Meta-Analytic Averages in Non-Strategic-Environments:

Table 18: Meta-Analytic Average of Disadvantageous Inequality (α)

(1) (2) (3) (4)

Disadvantageous Inequality Coefficient (α0) 0.099 0.102 0.234 0.248

(0.071) (0.080) (0.082) (0.112)

p-value 0.175 0.226 0.0098 0.046

τ̂ 2 0.092 0.098

I2 99.92 99.88

I2within 4.82 0.52

I2between 95.13 99.41

Observations 85 54 85 54

Model RE RE ML ML

Sample Full Restricted Full Restricted

Strategic Environment No No No No

Table 19: Meta-Analytic Average of Advantageous Inequality (β)

(1) (2) (3) (4)

Advantageous Inequality Coefficient (β0) 0.346 0.293 0.370 0.362

(0.058) (0.048) (0.035) (0.041)

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001

τ̂ 2 0.049 0.037

I2 99.40 98.81

I2within 18.41 9.04

I2between 80.82 89.75

Observations 104 69 104 69

Model RE RE ML ML

Sample Full Restricted Full Restricted

Strategic Environment No No No No

Notes: Columns (1) and (3) in the two tables estimate a two-level random-effects (RE) and
multi-level random-effects (ML) model on the full sample. Columns (2) and (4) focus on
studies with reported (i.e., non-approximated) SEs. SEs in parenthesis are cluster-robust.
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F.2 Meta-Analytic Averages in Strategic-Environments:

Table 20: Meta-Analytic Average of Disadvantageous Inequality (α)

(1) (2) (3) (4)

Disadvantageous Inequality Coefficient (α0) 0.596 0.465 0.839 0.799

(0.217) (0.172) (0.182) (0.210)

p-value 0.012 0.015 0.0002 0.0014

τ̂ 2 0.618 0.33

I2 99.95 99.92

I2within 9.05 8.23

I2between 90.91 91.74

Observations 60 53 60 54

Model RE RE ML ML

Sample Full Restricted Full Restricted

Strategic Environment Yes Yes Yes Yes

Table 21: Meta-Analytic Average of Advantageous Inequality (β)

(1) (2) (3) (4)

Advantageous Inequality Coefficient (β0) 0.117 0.109 0.218 0.223

(0.075) (0.080) (0.056) (0.061)

p-value 0.143 0.209 0.002 0.007

τ̂ 2 0.053 0.042

I2 98.96 98.55

I2within 54.71 53.02

I2between 44.11 45.45

Observations 40 34 40 34

Model RE RE ML ML

Sample Full Restricted Full Restricted

Strategic Environment Yes Yes Yes Yes

Notes: Columns (1) and (3) in the two tables estimate a two-level random-effects (RE) and
multi-level random-effects (ML) model on the full sample. Columns (2) and (4) focus on
studies with reported (i.e., non-approximated) SEs. SEs in parenthesis are cluster-robust.
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G Correlated Hierarchical Effects (CHE) Model

Table 22: Correlated Hierarchical Effects Model

ρ Disadvantageous Inequality (α) Advantageous Inequality (β)

0.00 0.469 0.510 0.331 0.322

(0.084) (0.108) (0.031) (0.036)

0.10 0.466 0.507 0.332 0.324

(0.084) (0.108) (0.031) (0.036)

0.20 0.463 0.503 0.334 0.325

(0.083) (0.107) (0.030) (0.036)

0.30 0.460 0.499 0.335 0.327

(0.083) (0.106) (0.030) (0.035)

0.40 0.457 0.496 0.336 0.328

(0.082) (0.106) (0.030) (0.035)

0.50 0.454 0.492 0.338 0.329

(0.082) (0.105) (0.030) (0.035)

0.60 0.452 0.489 0.339 0.330

(0.082) (0.104) (0.030) (0.035)

0.70 0.449 0.485 0.339 0.330

(0.081) (0.104) (0.030) (0.035)

0.80 0.446 0.481 0.340 0.331

(0.081) (0.103) (0.030) (0.035)

0.90 0.443 0.478 0.339 0.329

(0.080) (0.102) (0.030) (0.036)

0.99 0.440 0.475 0.333 0.320

(0.080) (0.102) (0.032) (0.038)

Observations 145 108 144 103

Model Full Restricted Full Restricted

Notes: SEs in parenthesis are cluster-robust.
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H Boxplots of Social Preferences Estimates
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Figure 15: Boxplots of sensitivity to disadvantageous inequality estimates (α) by paper.
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Figure 16: Boxplots of sensitivity to advantageous inequality estimates (β) by paper.
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