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Abstract

We experimentally study how cognitive noise affects behavior in coordination games.

Our key testable prediction is that equilibrium behavior depends on context, which we

define as the distribution from which games are drawn. This prediction arises from

players efficiently using their limited cognitive resources. Furthermore, this prediction

distinguishes cognitive noise from a large class of alternative behavioral game theory

and learning models. Experimentally, we find that subjects coordinate more frequently

when game payoffs are drawn from a narrower distribution. Nearly 50% of the vari-

ability in behavior can be attributed to cognitive noise rather than alternative sources

of strategic uncertainty.
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Figure 1: The Game

1 Introduction

Consider two players who would like to coordinate on an investment opportunity, described

by the payoff matrix in Figure 1. When a ≤ θ ≤ b, there are multiple equilibria. If the row

player believes the column player will invest, then she prefers to also invest. If the row player

believes the column player will not invest, then she prefers to not invest. How can we predict

which action the players will select? In this paper, we argue that cognitive noise corrupts a

player’s ability to perceive the value of the fundamental parameter, θ. Cognitive noise, thus,

provides a new source of uncertainty about the opponent’s perception of θ. This uncertainty

eliminates multiple equilibria and gives rise to a unique prediction about game play. Our

model of cognitive noise generates additional testable predictions that distinguish it from

leading behavioral models of strategic behavior, including Quantal Response Equilibrium

(QRE; McKelvey and Palfrey 1995, 1998) and Level-k Thinking (Nagel, 1995; Camerer, Ho

and Chong, 2004).

In a pair of pre-registered experiments, we demonstrate that cognitive noise is inherent

in strategic play and that it systematically affects the probability of coordination. We

experimentally implement the game shown in Figure 1 and we find three main results. First,

behavior is consistent with the unique equilibrium that arises in the presence of cognitive

noise, whereby the probability of investing declines continuously in θ. Second, we manipulate

the level of cognitive noise and find that it causally affects the frequency of coordination.

Third, we conduct a decomposition analysis which reveals that cognitive noise represents a

substantial source of the noise observed in strategic behavior; we estimate that roughly 50%

of noise in behavior stems from an imprecise representation of payoffs.

Our analyses highlight that the particular manner in which noise is modeled has impor-

tant implications for equilibrium. Thus, we are careful to ground our assumptions about

the source of noise in a recent empirical literature in economics that has begun investigating

imprecision in valuation and choice (Woodford, 2020). In particular, a series of recent indi-

vidual decision-making experiments has shown that noise arising in the subjective valuation

process exhibits clear parallels with noise in basic perceptual decisions (Polania, Woodford

and Ruff, 2019; Khaw, Li and Woodford, 2021, 2024; Frydman and Jin, 2022; Enke and

Graeber, 2023; Enke, Graeber and Oprea, 2025). This conceptual link between perceptual
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and economic decisions motivates our modeling approach: we assume each player holds a

prior about the fundamental parameter θ and then observes only a noisy signal of θ — even

after θ is clearly presented to the player. The noisy signal is meant to capture errors in-

volved with encoding and retrieving θ. Each player then uses her noisy signal as an input to

computing the value of an action.

Our particular model of cognitive noise generates a sharp and testable prediction about

strategic behavior. In the model, while each player faces unavoidable cognitive noise, we as-

sume that the noise distribution is optimally adapted to their environment. This assumption

of efficient coding generates the following prediction: as a player’s prior about θ becomes

more dispersed, she processes information about each value of θ with less precision (Barlow,

1961; Laughlin, 1981). Intuitively, if we assume a player has a fixed budget of cognitive

resources, then as the prior becomes more dispersed, she needs to allocate those cognitive

resources more broadly across the state space. This, in turn, leads her to perceive each value

of θ with more noise. Importantly, the noisier perception of θ affects the player’s probability

of investing, and hence, coordination. We, therefore, test whether cognitive noise plays an

important role in coordination games by experimentally manipulating the prior and testing

for the impact on game outcomes.

We present the details of our two experiments in the main body of the paper, but here

we preview the key aspects of the design. In our first experiment, subjects are randomly

matched on each of three hundred rounds, and they play the game outlined in Figure 1. We

set the values of a = 47 and b = 63, and the only object that varies across rounds is θ.

On each round, we assume that a subject’s prior is governed by the distribution of θ that

she has experienced during the experiment. Thus, to manipulate the prior, we implement

a between-subjects treatment where half of the subjects observe values of θ drawn from a

high volatility distribution, and the other half observe values of θ drawn from a low volatility

distribution. The key prediction is that the prior affects the manner in which players process

information about θ, and this, in turn, affects the subjective valuation of investing and not

investing.

In our main test, we compare the frequency that a player invests — conditional on θ

— across the two experimental treatments. Consistent with our theoretical model, we find

that for a given value of θ, the probability of investing depends on the prior to which the

player is adapted. In both treatments, behavior is consistent with subjects playing the unique

equilibrium threshold strategy. The smoking gun evidence for cognitive noise is that behavior

exhibits significantly more randomness in the high volatility treatment, where our model

predicts that information about θ will be processed with more noise. This result is consistent

with previous work from individual decision-making experiments (Frydman and Jin, 2022).
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However, a crucial difference is that here cognitive noise is key to endogenously producing

the equilibrium threshold strategy. Put differently, the data we produce are consistent with

a cognitive noise mechanism that endogenously generates both the equilibrium threshold

strategy and the greater degree of randomness that subjects exhibit in the high volatility

treatment. Overall, our experimental data indicate that coordination (both players investing

or neither player investing) is more likely when players are adapted to the low volatility

distribution and face a lower amount of cognitive noise.

We emphasize that other models of noisy strategic behavior, such as QRE, do not predict

that strategic behavior depends on the player’s prior. The intuition for this difference in

predictions is as follows. Our model of cognitive noise assumes that the agent is unable to

precisely compute the value of an action, owing to the noisy perception of θ. Thus, because

the prior is informative about the value of an action, any shift in the prior will affect the

subjective valuation of the action. In contrast, QRE assumes that each agent has no problem

with precisely perceiving θ and computing the value of each action, conditional on θ. The

noise in QRE arises only during the process of action selection, where the agent trembles. In

this case, the prior has no bearing on behavior, as the agent is already fully confident about

the precise value of each action.

Our results highlight cognitive noise as a novel and important source of strategic uncer-

tainty — which refers to uncertainty about an opponent’s behavior. In coordination games,

strategic uncertainty typically arises from uncertainty about which of multiple equilibria an

opponent will select, though other sources of strategic uncertainty also include uncertainty

about an opponent’s preferences, information, or rationality. Because cognitive noise cor-

rupts a player’s perception of θ, it necessarily leads the player to be uncertain about an

opponent’s perception and selection of an action. An important question, then, is how much

of the noise in behavior that we observe is actually driven by cognitive noise, rather than

alternative sources of strategic uncertainty?

To address this question, we conduct a second experiment that enables us to decompose

the observed noise in behavior into structural uncertainty (arising from cognitive noise) and

strategic uncertainty (arising from sources other than cognitive noise). The main innovation

in this second experiment is that we incentivize subjects to play the same series of games

as in our first experiment, except the opponent is now a computer. Crucially, we inform

subjects that the computer plays a known and deterministic strategy. This design feature

purges any strategic uncertainty that arises from sources other than cognitive noise. We find

that, even when playing against a computer, subjects still make errors that have signature

features of cognitive noise. More importantly, we estimate that roughly half of the noise in

behavior from our first experiment is driven by cognitive noise. We attribute the remaining
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noise in behavior to alternative sources of strategic uncertainty.

Our model of cognitive noise is closely related to the literature on global games (Carlsson

and Van Damme, 1993; Morris and Shin, 2003; Goldstein and Pauzner, 2005; Angeletos

and Lian, 2016). In a global game, a player is assumed to behave as if she receives a

noisy private signal about the state of the world, θ.1 We view cognitive noise as providing

a microfoundation for the source of noise in the private signals that are assumed in global

games. Importantly, this microfoundation also gives rise to two novel predictions that do not

obtain in a global games model. First, our model of cognitive noise predicts that behavior

should be context-dependent in equilibrium, whereas in a global game, there is no reason

to expect that the signal precision depends on the player’s prior. Our experimental data

provide clear evidence that signal precision does increase in the player’s prior precision.2

The second prediction that distinguishes cognitive noise from global games involves the

role of public signals (Woodford, 2020). A series of papers has argued that the unique equi-

librium generated in a global game will not obtain when there exists a sufficiently precise

public signal, such as a market price (Atkeson, 2000; Angeletos and Werning, 2006; Hell-

wig, Mukherji and Tsyvinski, 2006). This precise public signal can act as a coordination

device, which restores multiple equilibria. However, in our model, even public signals like a

market price or government announcement should be processed with cognitive noise, which

prevents coordination and sustains a unique equilibrium. Thus, a testable prediction is that

the provision of public information should lead to a different equilibrium under the global

games model, while equilibrium should stay fixed under our model of cognitive noise. Inter-

estingly, Heinemann et al. (2004) show that behavior in a coordination game remains largely

unchanged when exogenously manipulating the provision of public information; this result

is consistent with the interpretation that even publicly available information is processed

with cognitive noise. In Section 7.3, we provide more details on how our results fit into the

broader literature on global games.

Our experimental results have important implications for the modeling of incomplete

information games. Specifically, our results suggest that the class of games in which it is

appropriate to assume agents have incomplete information is likely broader than previously

thought. Even in situations where there is no explicit private information, cognitive noise

will break common knowledge about the valuation of each player’s action. In addition to

1Indeed, a majority of experimental tests of global games involve explicitly endowing subjects with noisy
signals of the fundamental value (Heinemann, Nagel and Ockenfels, 2004; Cabrales, Nagel and Armenter,
2007; Van Huyck, Viriyavipart and Brown, 2018; Szkup and Trevino, 2020; Helland, Iachan, Juelsrud and
Nenov, 2021; Avoyan, 2024).

2In Section 7.4, we describe in more detail how our treatment effect cannot be explained merely by a
shift in the player’s prior and why a shift in the signal distribution is needed.
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providing guidance for appropriate modeling assumptions, the idea that cognitive noise arises

near universally also has implications for experimental design. To see this, consider a recent

experiment by Goryunov and Rigos (2022) who use a clever design to explicitly inject noise

into the perception of a state variable. Subjects in their experiment observe a visual dot that

represents the state, and the authors rely on the inherent difficulty of visually perceiving the

exact location of the dot to generate private noise. Our results suggest that noise in valuation

arises in a much broader class of games, owing to the imprecision involved with perceiving

payoffs. As we demonstrate with our experiments, even when information about the state

variable is clearly communicated to subjects through symbolic numerals, we find evidence

that cognitive noise is sizeable.3 We also note that our measurements of cognitive noise are

likely to represent a lower bound relative to more complex strategic applications outside the

lab.

Our results build on a set of papers that have begun testing whether principles of cognitive

noise are active in individual economic decision-making (Polania, Woodford and Ruff, 2019;

Gershman and Bhui, 2020; Khaw, Li and Woodford, 2021, 2024; Frydman and Jin, 2022;

Enke and Graeber, 2023; Enke, Graeber and Oprea, 2025). In addition to testing whether

similar mechanisms extend into strategic environments, our setting of a coordination game

enables a novel test of the hypothesis that noise arises early in the decision process when

players need to form a perception of game payoffs (versus later in the decision process after

players have perceived payoffs and computed the expected value of each action).4 Sharp tests

of this hypothesis are important because the distinction between early and late noise can also

shed light on the origin of choice biases in individual decision-making (Woodford, 2020). Of

course, one additional factor that is present in strategic environments is the need for subjects

to form beliefs about opponents’ behavior. In our setting, it is important for equilibrium

that subjects are aware that (or at least believe that) their opponent faces cognitive noise.

In the Online Appendix, we provide evidence from an additional experiment which helps

to validate such an assumption. We find that subjects report beliefs that their opponent

exhibits more errors in a discrimination task as the distance between states gets smaller. In

related work, Enke, Graeber and Oprea (2023) demonstrate that meta-cognition of errors is

important for understanding how these errors aggregate at the level of institutions.

The model we propose is also closely related to a set of recent theoretical papers that

investigate endogenous information acquisition in coordination games. Yang (2015) shows

that the uniqueness result from the global games literature breaks down when players en-

dogenously acquire information about the fundamental using a mutual information cost

3See Section 2 for a background on noisy perception of symbolically presented numbers.
4We discuss the distinction between “early” and “late” noise in further detail in Section 3.3.
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function. Morris and Yang (2022), instead, show that when the cost function satisfies “in-

feasible perfect discrimination” — so that signal probabilities vary continuously with the

fundamental — then uniqueness is restored. Hébert and Woodford (2021) propose a set of

“neighborhood-based” cost functions for rational inattention problems, which are motivated

in part by evidence from perceptual experiments. These cost functions satisfy the infeasible

perfect discrimination property and, thus, lead to a unique equilibrium in a coordination

game. Our model of cognitive noise also gives rise to an endogenous information structure

that satisfies infeasible perfect discrimination and leads to a unique equilibrium. Impor-

tantly, our experimental data provide novel support for infeasible perfect discrimination in

a setting where all information is represented numerically, which complements recent work

on experimental tests of the cost function in rational inattention models (Dean and Neligh,

2023).5

Finally, our findings connect directly with experimental studies on Stag Hunt games,

which emphasize how strategic uncertainty shapes equilibrium selection. Previous research

documents that participants frequently coordinate on the risk-dominant equilibrium, espe-

cially under heightened uncertainty or payoff structures that increase strategic risk (Cooper

et al. 1992, Battalio et al. 2001). Dal Bó et al. (2021) further establish the critical role of the

basin of attraction—defined as the largest probability of a counterpart selecting the less co-

operative strategy that still incentivizes cooperation—in determining equilibrium outcomes.

They show experimentally that enlarging this basin substantially raises coordination on the

efficient equilibrium. Our results align closely with these findings: increasing the key payoff

parameter θ systematically shrinks the basin of attraction, thereby reducing coordination on

the efficient equilibrium. However, our experiment introduces an important and novel di-

mension: we demonstrate that equilibrium outcomes can systematically depend on cognitive

adaptation to the statistical environment. This finding provides a new perspective on how

perceptual mechanisms shape strategic uncertainty and equilibrium selection.

2 Background: Cognitive Noise in Numerical Cogni-

tion and Implications for Games

Before presenting the model, it is useful to motivate the specification of cognitive noise that

we will incorporate into a strategic setting. In the psychology literature, it has been known

5For a given fundamental value, we also find intriguing evidence that response times are significantly
longer in the high volatility condition (see Online Appendix D for more details). This finding suggests that
the implementation of strategies may be more complex (in the spirit of Oprea 2020) in the high volatility
condition.
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since Moyer and Landauer (1967) that people perceive numerical stimuli (e.g., Arabic nu-

merals) in a manner similar to how they perceive sensory stimuli like sound or weight. For

example, when a person is asked to judge which of two suitcases is heavier, the probability of

making a mistake will increase as the two weights become more similar. Moyer and Landauer

(1967) showed that when subjects are asked to rapidly choose which of two single-digit num-

bers is larger, the probability of a mistake also increases as the numerical distance between

the two numbers shrinks. This pattern, called the “distance effect,” can be explained by a

theory in which the perception of numerical quantities is intrinsically noisy due to constraints

in the nervous system (Dehaene, 2011). It is this noisy perception of numerical quantities

(and beliefs about others’ noisy perception) that will be key to determining equilibria of the

coordination game that we study.

The empirical fact that people make systematic errors in simple numerical discrimination

tasks might be surprising. This fact may be especially surprising in light of the ability of

quantitatively literate individuals to derive exact solutions to numerical problems through

algebraic manipulations. However, one can reconcile the findings of Moyer and Landauer

(and the many subsequent replications of their experiments) with the ability to logically

reason through quantitative methods by drawing on evidence for distinct decision systems

in the brain. Dehaene (1992) argues that there are three different “codes” that the brain

uses to represent numbers, each of which is implemented by a different neural circuit.

One circuit, which implements the “Arabic Code”, is responsible for implementing exact

arithmetic operations (such as computing the product of two multi-digit numbers). Another

circuit implements the “Verbal Code,” which is responsible for simple counting and retriev-

ing memorized facts about arithmetic (such as retrieving the number “28” when asked to

multiply “7” and “4”). Importantly, neither the Verbal nor the Arabic code provide any

information about the semantic meaning behind the number (Dehaene and Cohen, 1995).

Thus, if one wanted to compare the magnitudes between two numbers (say, whether “64” is

greater than some threshold), a third code would be required.

Indeed, the third circuit is devoted to the “Analogue Code”, which supports a semantic

representation of the quantity behind the number. Consider again the example where a

subject is presented with the numerical symbol “64” and is asked to compare its magnitude to

some threshold. The English word “sixty-four” comes to the subject’s mind, and there is no

ambiguity about the fact that the subject sees a “6” followed by a “4”. Yet the quantitative

meaning of this number, when processed through the Analogue Code, is not precise. It is,

instead, fuzzy and stochastic. To be clear, if the task at hand is to verbally repeat back the

number “64”, the subject will have little trouble speaking the words “sixty-four” because

this request draws upon the Verbal Code. If instead the task were to compare whether “64”
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is larger than some threshold, then the Analogue Code would be called upon. In this case,

the Analogue Code encodes the quantitative meaning behind the number “64” with a fuzzy

and stochastic representation, which is then used as a noisy input to the cognitive process

of comparison with a threshold.

Because nearly all game-theoretic experiments in economics use Arabic numerals to de-

note payoffs, a reasonable hypothesis is that some subjects use an analogue and noisy rep-

resentation of these payoffs when engaging in strategic reasoning. Such a hypothesis is

motivated in part by the growing evidence from individual decision-making experiments

that validates the assumption of noisy coding in incentivized economic tasks (Gershman and

Bhui, 2020; Khaw, Li and Woodford, 2021, 2024; Frydman and Jin, 2022; Enke and Graeber,

2023; Charles, Frydman and Kilic, 2024; Enke, Graeber and Oprea, 2025). Of course, when

considering strategic interactions outside the laboratory, payoffs are not clearly presented

to agents as 2-digit numbers, and are instead likely to require more complex computations.

This observation motivates us to consider the possibility that agents in strategic situations

in the field—often captured by simple 2× 2 laboratory games—are also subject to noise in

representing game features.6

While there are a variety of ways to impose noisy perception of fundamentals, we are

motivated by the evidence from the above references in adopting an additive noise structure.

That is, for a fundamental value θ, we assume that agent i only has access to a noisy signal

given by Si = θ + εi, where εi is distributed according to an arbitrary distribution g(ε).7 In

addition, the agent holds a prior about θ, which we denote as f(θ). As is standard, the agent

can then use Bayesian inference to combine her prior and noisy signal to arrive at a posterior

distribution over θ. Note that this is not the only way to impose imprecise perception of

θ. For example, other theories of imprecision in economics assume that agents have access

only to a partition over θ, such that the agent can deterministically identify which cell of the

partition a given value of θ belongs to, but he cannot distinguish among values of θ within a

cell (Gul, Pesendorfer and Strzalecki, 2017). In order to capture the distance effect and other

empirical patterns documented in the numerical cognition literature, our modeling approach

assumes an additive noise structure rather than a coarse partition (Hébert and Woodford,

2021).

6See also Castillo and Dickinson (2022), who study the role of sleep deprivation in coordination games.
7A common specification in the cognitive noise literature is to instead assume that the conditional

distribution of Si isN
(
log(θ), σ2

)
. Such a specification is motivated by Weber’s Law, in which discrimination

between nearby values of θ becomes more difficult as θ increases. However, recent work demonstrates that
Weber’s Law is not necessarily a hard-wired feature of perception (Shevlin et al., 2022) and that its presence
depends on the prior distribution of the stimulus (Frydman and Jin, 2022). Following this line of research,
we do not exogenously impose Weber’s Law through log encoding.
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3 Model of Cognitive Noise Equilibrium

We study the game shown in Figure 1, where b ≥ a. Our goal in this section is to derive

predictions for this game from our cognitive noise model. As a benchmark, we first present

the predictions from the standard model without any cognitive noise. We then introduce

cognitive noise into the model and derive its implications for the game, which leads to

a cognitive noise equilibrium (CNE). Finally, in order to contrast the predictions of our

cognitive noise model with those of leading behavioral game theory models, we also present

predictions from the Quantal Response Equilibrium model and the Level-k Thinking model.

In what follows, we assume that a and b are encoded without any noise by both players,

and we are interested in the implications of noisy perception of θ.8 We further assume that

each player has linear utility.

3.1 Benchmark: No Cognitive Noise

Without any cognitive noise, the game is one of complete information and its Nash equilibria

depend on the true value of θ, as outlined below:

• If θ > b, then Invest is a strictly dominated action for each player, and (Not Invest,

Not Invest) is the unique Nash (and dominant strategy) equilibrium.

• If θ < a, then Not Invest is a strictly dominated action for each player, and (Invest,

Invest) is the unique Nash (and dominant strategy) equilibrium.

• If a ≤ θ ≤ b, then there are two Nash equilibria in pure strategies: (Not Invest, Not

Invest) and (Invest, Invest). There also exists one Nash equilibrium in mixed strategies.

Thus, when θ takes on values in the intermediate range [a, b], there are multiple pure

strategy Nash equilibria. This prediction relies on each player’s ability to precisely observe

θ, which generates common knowledge about θ. The common knowledge, in turn, enables

coordination and gives rise to multiple self-fulfilling equilibria. The predictions change dra-

matically, however, when we relax the assumption that players can precisely perceive θ.

8Our assumption that a and b are processed without noise can be justified, for example, through a
learning mechanism. In our experiment, we keep a and b constant across all rounds, so the amount of noise
in processing a and b is arguably minimal. Nevertheless, if we allow for a small but positive amount of
noise in perceiving a and b, the core theoretical result that we present in Section 3.2 regarding equilibrium
existence and uniqueness still holds. Specifically, as noise vanishes, the risk-dominant equilibrium emerges
as the unique equilibrium. Indeed, Carlsson and Van Damme (1993) show that equilibrium uniqueness via
iterative elimination of strictly dominated strategies survives when all payoffs in a 2× 2 coordination game
are observed with noise.
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3.2 Information Processing Constraint: Cognitive Noise

Suppose now that players perceive θ with noise. An alternative interpretation of the source

of noise is that players retrieve the value of θ with noise when using it as an input to

compute the subjective value of each action. In order to minimally depart from the rational

benchmark, we assume cognitive noise only corrupts the perception of θ. Our assumption

that players exhibit noise in perceiving θ is based on the references discussed in Section 2,

and we formalize the assumption as follows:

Assumption 1 (Cognitive Noise) Players have a common prior belief that θ is drawn

from a continuously differentiable strictly positive density f(·) on the real line. Each player

i, i = {1, 2}, observes a noisy signal of the realized value of θ, Si = θ+ σεi, where each εi is

independently and identically drawn from a continuous and strictly positive density g(·) on

the real line.

The prior belief about θ, which we denote by f(θ), can represent public information or

past experience in a similar environment that is common to both players. Our assumption of

cognitive noise does not imply that, if a subject were asked to repeat the value of θ back to

the experimenter (verbally or through written form), she would exhibit errors. As discussed

in Section 2, our framework is consistent with the view that subjects have conscious access

to the presented value of θ, but that a player’s judgments and computations are made based

on a noisy representation of θ.9

It is worth highlighting how Assumption 1 introduces uncertainty into various aspects of

the decision process. To illustrate, we derive the condition under which each player chooses

to invest. Player i will invest if and only if:

EU[Not Invest |Si] < EU[Invest |Si]

E[θ|Si] < a+ [b− a]E[p(a, b, θ)|Si]∫
θf(θ|Si)dθ < a+ [b− a]

∫
p(a, b, θ)f(θ|Si)dθ, (1)

where f(θ|Si) is player i’s posterior belief about the distribution of θ after observing signal

Si. The function, p(a, b, θ), maps the game payoffs into a belief about the probability that

the opponent invests. In the equilibria of the game, p will be pinned down endogenously by

rational expectations but, for now, it is instructive to consider p as exogenous.

9An important restriction in Assumption 1 is that cognitive noise only operates over a single and specific
parameter. This assumption is helpful in generating sharp testable predictions, and it also distinguishes our
model from an alternative theory where cognitive noise affects a decision-maker’s overall cognitive state.
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In inequality (1), the noisy signal, Si, appears on both sides of the expression. On

the left-hand side, Si induces uncertainty about player i’s own payoff from not investing,

which we refer to as structural uncertainty (Brandenburger, 1996). In our setting, structural

uncertainty can arise from noisy encoding of θ. On the right-hand side, Si induces uncertainty

about the opponent’s probability of investing, which we refer to as strategic uncertainty.10

If, for example, player i believes the opponent uses a cutoff rule, then her belief about the

opponent investing depends on her belief about the opponent’s signal. Since Si and S−i are

drawn conditional on θ, player i′s belief about her opponent’s perception of θ will depend

on Si.

Given Assumption 1, we can invoke theoretical results from the global games literature

to characterize the equilibrium distribution of actions. Let u(x, l, θ) be a player’s payoff

when (i) he chooses action x, (ii) the probability that his opponent chooses Not Invest is l,

and (iii) the state is θ. Moreover, define π(l, θ) as the payoff gain from choosing Not Invest

rather than Invest:

π(l, θ) ≡ u(Not Invest, l, θ)− u(Invest, l, θ) = θ − b+ l(b− a)

Our setup satisfies the six conditions from Section 2.2.2 in Morris and Shin (2003):

A1. Action Monotonicity: π(l, θ) is non-decreasing in l.

A2. State Monotonicity: π(l, θ) is non-decreasing in θ.

A3. Strict Laplacian State Monotonicity: There is a unique θ⋆ solving
∫ 1

l=0
π(l, θ⋆)dl = 0.

A4. Uniform Limit Dominance: There exist θ ∈ R, θ ∈ R, and c ∈ R++, such that (1)

π(l, θ) ≤ −c for all l ∈ [0, 1] and θ ≤ θ; and (2) π(l, θ) > c for all l ∈ [0, 1] and θ ≥ θ.

A5. Continuity:
∫ 1

l=0
h(l)π(l, θ)dl is continuous with respect to θ and density h.

A6. Finite Moments of Signals:
∫∞
z=−∞ zg(z)dz, and

∫∞
z=−∞ z2g(z)dz are well defined.

In the game we study, condition A1 states that the incentive to choose Not Invest is

increasing in the probability the opponent chooses the same action (i.e., there are strategic

10Following, e.g., Morris and Shin (2002, 2004), we define strategic uncertainty as any uncertainty about
the opponent’s choice. Thus, uncertainty about the opponent’s perception of θ, even conditional on precise
knowledge of the opponent’s strategy, would still generate strategic uncertainty as long as the opponent’s
strategy is a function of their perception of θ. Another potential source of strategic uncertainty can derive
from uncertainty over the opponent’s preferences, e.g., risk aversion (Heinemann et al., 2009). In Section 6,
we describe an experiment that can separate between sources of strategic uncertainty that do and do not
originate from uncertainty about θ.
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complementarities between players’ actions). Condition A2 states that the incentive to

choose Not Invest is increasing in the state. Condition A3 introduces a further strengthening

of A2 to ensure that there is at most one crossing point between the utilities from the two

actions for a player who believes the opponent randomizes uniformly over the available

actions. Note that, in our game, θ⋆ = (a+ b)/2. Condition A4 requires that the payoff gain

from choosing Not Invest is uniformly negative for sufficiently low values of θ, and uniformly

positive for sufficiently high values of θ.11 Condition A5 is a continuity property, where

continuity in h is with respect to the weak topology. Condition A6 requires the distributions

of noise and squared noise to be integrable and it guarantees that the mean and the variance

of noisy signals are finite. Because our game satisfies these six conditions, we can state the

following proposition.

Proposition 1 (Equilibrium Existence and Uniqueness) Let θ⋆ be defined as in A3.

For any δ > 0, there exists σ > 0 such that, for all σ < σ, the unique strategy surviving

iterative elimination of strictly dominated strategies in the game is to choose Invest if Si ≤
θ⋆ − δ and to choose Not Invest if Si ≥ θ⋆ + δ.

Proposition 1, adapted directly from Proposition 2.2 in Morris and Shin (2003), tells us

that if players perceive θ with noise that has a sufficiently small (but positive) variance, then

there is a unique equilibrium strategy: choose Invest if the noisy signal is smaller than θ⋆− δ
and choose Not Invest if the noisy signal is larger than θ⋆ + δ. The proposition from Morris

and Shin (2003) does not specify the equilibrium strategy for noisy signals in the interval

(θ⋆−δ, θ⋆+δ). When θ is in this tight interval around the cutoff θ⋆, the proposition only tells

us that Pr(Invest|θ) is between Pr(S < θ⋆ − δ|θ) and Pr(S < θ⋆ + δ|θ). However, since the

statement holds for any δ > 0, we can focus on small values of δ such that the indeterminate

interval (θ⋆ − δ, θ⋆ + δ) is negligible. In this case, Pr(Invest|θ) is well-approximated by

Pr(S < θ⋆|θ). This allows us to derive the following comparative static predictions.

Proposition 2 (Comparative Statics) The equilibrium probability that each player in-

vests, Pr(Invest|θ), is continuous and strictly decreasing in θ. Moreover, increasing the

variance of the noisy signal, σ, decreases the sensitivity of equilibrium choices to θ (that is,

the rate at which Pr(Invest|θ) decreases with θ).

Proposition 2 tells us that the equilibrium probability of investing should be smoothly

decreasing in θ. The novel empirical content of this prediction, when viewed through the lens

11To see that our setup satisfies this condition, recall that π(l, θ) = θ−b+l(b−a) and note that −b+l(b−a)
reaches its minimum at −b (when l = 0), grows linearly in l, and reaches its maximum at −a (when l = 1).
Thus, π(l, θ) ∈ [θ − b, θ − a]. Fix a c ∈ R++. Any θ ≤ a− c and any θ ≥ b+ c satisfy A4.
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of our cognitive noise assumption, is that the smooth relationship should obtain even in the

absence of any explicit private signals to each player. This is the first testable prediction we

will take to the data in our experiment. This theoretical result indicates that, in the unique

equilibrium, the probability of investing is continuous and monotonically decreasing in θ. If

we operationalize coordination as both players investing or both players not investing, then

it follows that coordination will also be systematically related to θ. In particular, the model

predicts that the probability of coordination is a continuous and U-shaped function of θ,

which has its minimum at θ = (a+ b)/2. We emphasize that the prediction of a systematic

relationship between θ and the probability of coordination does not arise in the complete

information version of the game.

The second part of Proposition 2 is not immediately testable, as we cannot directly ob-

serve the amount of cognitive noise. However, we can make an even starker prediction about

equilibrium outcomes by putting more structure on Si in a way that is grounded in the

growing literature on noisy coding in economic decision-making. Specifically, there are now

several pieces of empirical evidence which suggest that the structure of cognitive noise—i.e.,

the distribution of Si in our model—is shaped by prior beliefs (Polania, Woodford and Ruff,

2019; Frydman and Jin, 2022; Payzan-LeNestour and Woodford, 2022). This evidence sup-

ports the hypothesis that the conditional noisy signal distribution is not fixed, but is instead

malleable and shaped by the decision-maker’s prior beliefs. Such an endogenous relation-

ship between priors and signals can be micro-founded through a variety of mechanisms, one

of which is called efficient coding (Girshick, Landy and Simoncelli, 2011; Wei and Stocker,

2015; Heng, Woodford and Polania, 2020).

A key premise of efficient coding is that, while the brain has limited cognitive resources

and is thus unable to precisely discriminate between all possible values of θ, a player can

optimally allocate cognitive resources based on his prior beliefs about θ. Consider a player

who faces a sequence of games, each of which is characterized by a realization of θ. Suppose

further that, in each instance of the game, θ is drawn from a normal distribution—as it will

be in our experimental test. As the variance of the normal distribution increases (holding the

mean fixed), efficient coding predicts that cognitive resources will be allocated away from the

mean and toward more extreme values. Intuitively, as the variance of the prior increases, the

player needs to distribute her cognitive resources more broadly across the state space, which

results in noisier perception of each value of θ. Thus, for a given value of θ, the amount of

cognitive noise that the player faces will depend on her prior beliefs about θ. In Appendix

A, we adopt the efficient coding and normal prior model of Khaw et al. (2021) to microfound

the following assumption:

Assumption 2 (Efficient Coding) Suppose that the distributions of θ and εi are normal,
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θ ∼ N (µθ, σ
2
θ) and εi ∼ N (0, 1). The variance of the noisy signal distribution, σ2, is

increasing in the variance of the prior distribution, σ2
θ .

Note that because Proposition 1 does not depend on distributional assumptions on θ

or εi, we obtain the same unique equilbrium under the additional conditions imposed in

Assumption 2. Crucially, Assumption 2 generates a novel comparative static prediction:

the rate at which the probability of investing decreases in θ is faster as the prior variance

decreases.

Corollary 1 Increasing the prior variance of θ, σθ, will decrease the sensitivity of choices

to θ (that is, the rate at which Pr(Invest|θ) decreases with θ).

The intuition for this result is simple. Each player’s action is deterministic in their signal

Si, such that they invest if and only if Si < (a+ b)/2. Efficient coding induces the signal to

become noisier as the prior becomes more dispersed. The noisier signal immediately leads

to a less sensitive relationship between behavior and the true fundamental θ. In Appendix

A, we provide a model with normally distributed prior beliefs and normally distributed

noise, for which we characterize the distribution of equilibrium actions. This special normal-

normal case is particularly relevant, as our experimental design induces a prior over θ that

is approximately normally distributed.

We illustrate the theoretical predictions of our model under this special case in Figure

2. In this case of normal prior and normal signal, the equilibrium probability of investing

is given by IP(Invest|θ, ωC , σθ) = Φ
(

55−θ
ωCσθ

)
. In this expression (which we formally derive

in Appendix A using the model from Khaw et al. 2021), we replace σ with ωCσθ so that

the standard deviation of noisy signals, σ, is proportional to the standard deviation of the

prior. The constant of proportionality is the free parameter ωC . One can think of this free

parameter as indexing the degree of the cognitive constraint: fixing the prior, a larger value

of ωC leads to a noisier signal of θ. Figure 2 shows that as we shift from a low volatility

prior to a high volatility prior, behavior becomes less sensitive to θ. We note that the

prediction that greater dispersion of stimuli leads behavior to become less sensitive to a

change in the stimulus value is predicted by a broad class of theories, including the decision-

by-sampling model from cognitive science (Stewart et al., 2006), theories of normalization

from neuroscience, and alternative specifications of efficient coding (Wei and Stocker, 2015;

Heng et al., 2020; Payzan-LeNestour and Woodford, 2022; Frydman and Jin, 2022). Thus,

the context-dependent perception that is encoded in Assumption 2, and generates our main

theoretical prediction, can arise from a variety of microfoundations. Next, we show that

this theoretical prediction of context-dependence does not arise under alternative behavioral

game theory models.
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Figure 2: Probability of Investing and Coordination as a Function of θ. Note: The
upper panel displays the predicted probability of investing. The bottom panel displays the
predicted probability of coordination, where coordination is defined as both players investing
or both players not investing. In both panels, the solid line denotes the prediction for a low
volatility prior distribution with θ ∼ N (55, 20); the dashed line denotes the prediction for a
high volatility prior distribution with θ ∼ N (55, 400); the conditional signal distribution is
normal: Si ∼ N (θ, ω2

Cσ
2
θ); we set the following parameter values: ωC = 0.85, a = 47, b = 63.

3.3 Predictions from Alternative Models

Behavioral game theorists have proposed a variety of alternative models which relax the

standard assumptions of perfect maximization and rational beliefs. For example, Quan-

tal Response Equilibrium assumes imperfect maximization but retains the rational beliefs
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assumption. Level-k Thinking relaxes the rational expectations assumption but maintains

best responses. Below, we derive predictions from these two leading behavioral game the-

ory models and demonstrate how our model of CNE differs in terms of both assumptions

and predictions. As we will see, one important conclusion is that neither QRE nor Level-K

Thinking predict that behavior depends on prior beliefs about θ.

Quantal Response Equilibrium

In our cognitive noise equilibrium model, noisy encoding of θ generates stochastic strategic

behavior. As such, our model is related to Quantal Response Equilibrium (McKelvey and

Palfrey, 1995, 1998; Goeree, Holt and Palfrey, 2016), which is a leading model of stochastic

behavior in experimental game theory.12 For some parameter values, the models of QRE and

cognitive noise deliver similar predictions, in that both theories predict that the probability

of investing is stochastic and decreases smoothly and monotonically in θ. However, there are

fundamental differences in the assumptions of the two theories, which generate distinguishing

predictions.

The key difference in assumptions comes from the stage at which noise enters the decision

process.13 In our model, noise arises early in the decision process when the player is perceiv-

ing game payoffs, before each player has computed the expected utility of each action. In

contrast, under QRE, noise arises late in the decision process, after each player has perfectly

perceived all parameters of the game and precisely computed the expected utility of each

action.

In the game we study in this paper, QRE predicts that a player invests if and only if:

EU[Not Invest] + η1 < EU[Invest] + η2

θ + η1 < a+ p[b− a] + η2

θ < a+ p[b− a]− (η1 − η2), (2)

where p is the belief about the probability the opponent invests, and η1 and η2 are the late

noise perturbations to payoffs. Before making her choice, each player receives a perfectly

informative signal about η1 and η2 (uncorrelated with the opponent’s perturbations to pay-

offs). If we assume that these perturbations are independently and normally distributed

12For other models of strategic interaction with stochastic choice, see Goeree and Holt (2004), Friedman
and Mezzetti (2005), Goeree and Louis (2021), and Gonçalves (2023).

13We are grateful to Michael Woodford for highlighting this point in an illuminating discussion of our
paper.
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with mean 0 and variance σ2
η > 0, we have:

IP(Invest) = ϕ(p, θ) = Φ

(
a+ p[b− a]− θ√

2ση

)
.

A Quantal Response Equilibrium then requires that p is a fixed point, conditional on θ; i.e.,

a QRE is a solution to p = ϕ(p, θ).

It is useful to compare the condition for investing under QRE (displayed in inequality

(2) above) with the analogous condition for investing under cognitive noise (displayed in

inequality (1)). Inequality (1) indicates that, with cognitive noise, players remain uncertain

about the true value of θ even after θ is realized; the residual uncertainty comes from the

fact that players only have access to a noisy signal of θ. As a consequence, player i believes

that player j’s signal about θ is centered at i’s perceived value of θ (which is a function of i’s

signal about θ). In contrast, the true value of θ appears in inequality (2), which implies that,

in QRE, the player has no uncertainty about θ. It follows that, in QRE, player i believes

that player j’s signal about θ is centered at the true value of θ.

The difference in assumptions about when noise enters the decision process leads to

two important distinguishing predictions. The first difference is that, in QRE, each player

encodes θ precisely, and thus there is no role for a prior belief over θ. The prior belief does,

however, play a key role in our model of cognitive noise. Specifically, our model predicts

that the prior belief affects the precision of perceiving θ through efficient coding. Our

model therefore endogenizes the noise structure and generates context dependent behavior

in equilibrium.14

The second difference between QRE and cognitive noise involves the theoretical con-

ditions that are sufficient to generate a unique equilibrium. As shown in Proposition 1,

cognitive noise generates a unique equilibrium when the variance of noise is sufficiently

small. One interpretation of this condition is that when players pay sufficient attention to

the coordination game, and hence the variance of the noisy signal Si is sufficiently small,

uniqueness obtains under our theory of cognitive noise. In contrast, QRE delivers a unique

equilibrium when the variance of the shock to payoffs is sufficiently large (Ui, 2006). While

our experimental data will not enable us to test between this difference in conditions for

uniqueness, one implication is that when players devote a substantial amount of attention

to the coordination game, the multiplicity of equilibria is more likely to be eliminated under

cognitive noise, compared with QRE.

14In QRE, the noise structure is usually taken to be exogenous. Friedman (2020) proposes a model that
endogenizes the precision parameter in QRE through the set of payoffs in the current game.
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Level-k Thinking

Another leading model in behavioral game theory is Level-k Thinking (Stahl and Wilson,

1994, 1995; Nagel, 1995; Camerer, Ho and Chong, 2004). In one prominent version of this

theory, there are different types of players, and each type best responds to another type who

exhibits one less degree of strategic sophistication. For example, a Level-0 type would be

characterized by no strategic sophistication and, thus, would exhibit purely random behavior.

A Level-1 type would then best respond to a Level-0 player, and a Level-2 player would best

respond to a Level-1 player, and so on. What are the predictions of Level-k Thinking for

the game we study in Figure 1? Following the analysis in Kneeland (2016) and given that

Level-0 players randomize, the expected utility of a Level-1 player from Invest is

EUL1(Invest) =
1

2
a+

1

2
b

Thus, EUL1(Invest) > EU(Not Invest) if and only if θ < (a+ b)/2. Next, under the assump-

tion that Level-2 players believe they are facing a Level-1 opponent, the expected utility

from Invest for a Level-2 player is

EUL2(Invest) =

b if θ < (a+ b)/2

a if θ > (a+ b)/2

When θ < (a + b)/2, then EUL2(Invest) = b > θ. Conversely, when θ > (a + b)/2, then

EUL2(Invest) = a < θ. Thus, Level-2 players choose Invest if and only if θ < (a + b)/2.

Using the same logic, we obtain the same prediction for all higher levels.

In sum, the fraction of subjects who choose Invest is:

Pr[Invest] =

Pr[L0]
1
2
+ (1− Pr[L0]) if θ < (a+ b)/2

Pr[L0]
1
2

if θ > (a+ b)/2

where Pr[L0] is the fraction of Level-0 players in the population. The theory therefore

predicts that, in the aggregate, the probability of investing is monotone in θ and exhibits a

sharp decrease at θ = (a + b)/2. In contrast, both our model of cognitive noise and QRE

predict that the probability of investing declines continuously in θ. The more important

difference with respect to cognitive noise is that Level-k Thinking does not predict that

behavior depends on prior beliefs.

In summary, cognitive noise equilbrium predicts that conditional on θ, behavior will de-

pend systematically on prior beliefs. In contrast, both QRE and Level-k do not generate any
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context-dependence. It is this unique prediction of the cognitive noise model that motivates

our experimental design.

4 Experimental Design of Coordination Game

We test the cognitive noise model by incentivizing subjects to play a simultaneous move

game, and we manipulate the distribution that generates the fundamental payoff, θ. We pre-

register the experiment and recruit 300 subjects from the online data collection platform,

Prolific.15 We restrict our sample to subjects who, at the time of data collection, (i) were UK

nationals and residents, (ii) did not have any previous “rejected” submissions on Prolific, and

(iii) answered all comprehension quiz questions correctly.16 Subjects are paid 2 GBP (∼ 2.8

USD) for completing the experiment, and they have the opportunity to receive additional

earnings based on their choices and the choices of other participants.

The experiment consists of 300 rounds, and each subject participates in all rounds. In

each round, a subject is randomly matched with another subject and, together, they play

the simultaneous move game in Figure 1. We hold constant the payoff parameters a = 47

and b = 63 across all rounds. The only feature of the game that varies across rounds is

the value of θ, which is drawn from the condition-specific distribution f(θ). In each round,

both subjects observe the same realization of θ. In order to shut down learning about other

participants’ behavior, we choose not to provide subjects with feedback about their earnings

or their opponent’s choice in a given round. At the end of the experiment, one round is

selected at random, and subjects are paid according to the number of points they earned in

that round, which in turn, depends on their action, their opponent’s action, and the (round-

specific) value of θ. Points are converted to GBPs using the rate 20:1. The average duration

of the experiment was ∼ 25 minutes and average earnings, including the participation fee,

were ∼ 5.5 GBP (∼ 7.7 USD).

Subjects are randomized into one of two experimental conditions: a high volatility con-

dition or a low volatility condition, which differ only based on the distribution of θ. In the

high volatility condition, f(θ) is normally distributed with mean 55 and variance 400. In the

low volatility condition, f(θ) is normally distributed with mean 55 and variance 20. In both

conditions, after drawing θ from its respective distribution, we round θ to the nearest integer,

15The pre-registration document is available at https://aspredicted.org/IHU_KCE.
16After reading the instructions, participants were asked three questions to test comprehension of the

instructions. Only participants who answered all three questions correctly were allowed to continue with the
experiment. In each question, participants were presented with an example game they might face during the
experiment (that is, they were shown a game with a realized value of θ) and asked to compute the earnings
resulting from a hypothetical configuration of own and other’s actions.
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and we re-draw θ if the rounded value is less than 11 or greater than 99. We implement

these modifications to the normal distribution to control complexity and ensure that θ is a

two-digit number on each round.

We do not give subjects any explicit information about f(θ) in the instructions, as our

intention is to test whether a subject can adapt to the statistical properties of the environ-

ment without explicit top-down information. Moreover, we believe that such a design is more

natural than explicitly telling subjects the distribution of parameters they will experience,

as this could artificially direct their attention to the distribution and potentially generate an

experimenter demand effect. Because we do not explicitly endow subjects with the prior, our

design enables us to test for learning effects (i.e., is the predicted treatment effect stronger

towards the end of the experiment?) We note that in previous experimental work on efficient

coding, full adaptation can take roughly 200 rounds, which is why we choose a relatively

large number of rounds in our design (Heng et al., 2020). Each condition contains an iden-

tical set of instructions and comprehension quiz.17 As outlined in our pre-registration, we

exclude the first 30 rounds from our analyses, in order to allow subjects time to adapt to

the distribution of θ.18

Recall that, in the complete information version of the game, there are multiple equilibria

when θ is in the range [47, 63]. We therefore focus our analyses on games for which θ lies

in this range. We pre-register that our main analyses are restricted to those rounds for

which θ ∈ [47, 63] and we call these “common rounds.” This is a crucial feature of our

design, because it allows us to compare behavior across conditions using the exact same set

of games and varying only the context, that is, the distribution of past games.

In choosing the parameters for our design (a, b and the two condition-specific values

of σθ), we strike a balance among three competing objectives: (i) generating a substantial

number of common rounds to analyze, (ii) creating a large predicted treatment effect, and

(iii) guaranteeing the empirical distributions of θ approximate the distributions that we

assume in the theory. There is a tension between the first objective and each of the latter

two. First, a natural way to create a large predicted treatment effect is to set a large value

of σθ in the high volatility condition. However, if this parameter is too large, there will

be relatively few draws for which θ ∈ [47, 63] and, thus, few common rounds to analyze in

this condition. Second, theory requires us to choose an [a, b] range which is not too large.

Specifically, equilibrium uniqueness requires that, in both conditions, subjects believe there

17The experimental instructions are available in Online Appendix C.
18While previous work has shown that full adaptation can take roughly 200 rounds (Heng et al., 2020),

our analysis does not require complete adaptation. Our pre-registered choice of excluding only the first 30
rounds in the empirical analyses reflects a balance between allowing sufficient adaptation time and statistical
power for detecting a treatment effect.
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Figure 3: Sample Screenshot Shown to Participants in Experiment 1. Note: In this
round, the realized value of θ is 45, which is clearly and explicitly displayed to both subjects.
Subjects choose “Option A” or “Option B” by pressing one of two keys on the keyboard.

is some chance of observing games with dominant strategies, that is, games with θ < a and

games with θ > b. At the same time, reducing the distance between a and b— e.g., choosing

a = 50 and b = 60 — would reduce the number of common rounds to analyze.

Figure 3 provides a screenshot of a single round shown to subjects. In order to avoid

framing effects, we label the two options “Option A” and “Option B”, and the left-right

location of each option is randomized across rounds. The number “45” is the realized value

of θ on the specific round shown in Figure 3. We emphasize that — while the number

is clearly displayed to all subjects and, thus, would traditionally be interpreted as public

information — here we rely on cognitive noise to transform the fundamental value into

private information. In other words, we assume that cognitive constraints prevent each

player from precisely perceiving and retrieving the fundamental value in order to compute

the value of each action.

Finally, we intentionally choose the visual display of the experiment to be as simple as

possible, so that we only present the values of a, b, and θ once on each experimental screen.

An alternative approach would be to display the game in matrix form, similar to the display

in Figure 1. While the matrix approach is more standard in experimental economics, it

may also be interpreted by subjects as more complex compared to our design in Figure 3.

Importantly, the complexity of how information is presented has recently been shown to affect

the level of cognitive noise (Enke and Graeber, 2023). Thus, we do not believe one display

strictly dominates another. On the contrary, differences in display may systematically affect

cognitive noise which could motivate modifications of our design to assess the impact on

coordination.
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5 Experimental Results from the Coordination Game

5.1 Choice Behavior

Following our pre-registration, we restrict our analysis to common rounds after the initial

30-round adaptation period. We also exclude observations for which subjects execute a

decision with a response time of less than 0.5 seconds, which generates a final sample of

50,129 decisions (36,580 decisions in the low volatility condition and 13,549 decisions in the

high volatility condition).19 Across both conditions, subjects choose to invest on 58.9% of

rounds.

In the upper panel of Figure 4, we plot the probability of investing as a function of the

fundamental, separately for the two experimental conditions. One can see that, in both

conditions, the aggregate data are consistent with the prediction that the frequency with

which subjects invest is continuous and monotone in θ. The data are therefore consistent

with the predicted relationship between θ and the probability of investing from Proposition 2.

Importantly, the smooth decreasing relationship between θ and the probability of investing

obtains even without introducing any explicit private signals about θ, which are typically

implemented in global games experiments. Our interpretation is that subjects generate their

own “homegrown” private signals about θ, because cognitive constraints prevent them from

precisely observing θ. In the bottom panel of Figure 4, we plot the frequency of coordination

outcomes as a function of θ. In both conditions, we observe a systematic relationship between

the likelihood of coordination and θ: coordination is more likely as θ becomes farther from

55.

In order to provide a more targeted test of cognitive noise, we focus on the prediction

from Corollary 1, which implies that the distribution of noisy signals should vary systemat-

ically across our two experimental conditions. Specifically, efficient coding predicts context-

dependent behavior, where subjects in the low volatility condition can more precisely detect

whether the fundamental crosses the unique equilibrium threshold. The upper panel of Fig-

ure 4 provides evidence consistent with this prediction: the frequency of investing is more

sensitive to the fundamental in the low volatility condition. The differential slopes shown in

the upper panel of Figure 4 represent our main experimental result, which separates cogni-

tive noise equilibrium from a broad class of alternative game-theoretic models, such as QRE

and Level-k thinking.

19We impose the pre-registered cutoff of 0.5 seconds to avoid analyzing decisions that are made excessively
fast. This restriction excludes 1,916 decisions; our results are robust to including these excessively fast
decisions in our analyses. Note also that our final sample contains substantially more observations from the
low volatility condition, which is driven by the fact that the realized value of θ on each round is more likely
to fall in the range [47, 63] in the low volatility condition, compared to the high volatility condition.

22



Dependent Variable: Pr(Invest) (1) (2) (3) (4)

(θ − 55) -0.040∗∗∗ -0.042∗∗∗ -0.040∗∗∗ -0.042∗∗∗

(0.002) (0.003) (0.003) (0.003)

(θ − 55) x Low -0.022∗∗∗ -0.018∗∗∗ -0.024∗∗∗ -0.018∗∗∗

(0.004) (0.004) (0.004) (0.004)

Low -0.040 -0.032 -0.018 -0.028

(0.028) (0.030) (0.030) (0.028)

Late 0.001

(0.008)

(θ − 55) x Late 0.003

(0.002)

Low x Late 0.092

(0.154)

Low x (θ − 55) x Late -0.007∗∗

(0.003)

Constant 0.624∗∗∗ 0.618∗∗∗ 0.607∗∗∗ 0.614∗∗∗

(0.018) (0.020) (0.021) (0.019)

Observations 50,129 9,425 9,201 18,626

Rounds 31-300 31-80 251-300 (31-80)

& (251-300)

Table 1: Treatment Effect Estimates. Note: Table displays results from mixed effects
linear regressions. Observations are at the subject-round level. The dependent variable takes
the value 1 if the subject chooses to Invest and 0 otherwise. The variable Low takes the
value 1 if the round belongs to the low volatility condition and 0 otherwise. The variable
Late takes the value 1 if the round number is 251 or greater and 0 otherwise. Only data
from rounds where 46 < θ < 64 are included in the regressions. There are random effects
on (θ − 55) and the intercept. Standard errors are clustered at the subject level and shown
in parentheses. ***, **, * denote statistical significance at the 1%, 5%, and 10% levels,
respectively.
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Figure 4: Empirical Frequency of Investing and Coordination as a Function θ.
Note: In the Upper Panel, for each value of θ between 47 and 63, we plot the proportion
of rounds on which a subject chooses to invest, separately for each of the two conditions.
Data are pooled across subjects and are shown for rounds 31-300, after an initial 30-round
adaptation period. Vertical bars inside each data point denote two standard errors of the
mean. Standard errors are clustered by subject. In the Lower Panel, we plot the proportion
of games for which the pair of subjects coordinate (both subjects invest or neither subject
invests). Data are shown for rounds 31-300. Vertical bars inside each data point denote two
standard errors of the mean. Standard errors are clustered by subject pair.
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To formally test the difference in slope, we estimate a series of mixed effects linear regres-

sions which account for the fact that each subject contributes more than one observation to

the dataset. Column (1) of Table 1 confirms our main result: the coefficient on the interac-

tion term (θ−55) x Low is significantly negative (p < 0.001), indicating that the probability

of investing decreases in the fundamental more rapidly when a subject is adapted to the low

volatility condition.20 Columns (2) and (3) show that this result holds in both early (first

50 trials after adaptation) and late (last 50 rounds of the session) subsamples (both with

p < 0.001). Column (4) indicates that the treatment effect becomes moderately stronger

over the course of the experiment, as the coefficient on the triple interaction is negative

(p = 0.024). The strengthening of the treatment effect over the course of the experiment

suggests that subjects have not fully adapted to the distribution by round 80 and that

additional rounds of play provide the opportunity for further adaptation.

The bottom panel of Figure 4 shows that coordination also exhibits a strong degree of

context-dependence. Subjects in the low volatility condition are significantly more likely to

coordinate their behavior than subjects in the high volatility condition (63.8% vs. 60.5%; p <

0.001 for a difference in means). Moreover, this difference in coordination frequency is more

pronounced for games where θ is farther from 55, consistent with the theoretical prediction

shown in the bottom panel of Figure 2. The difference in coordination frequency across

conditions also holds (and becomes moderately stronger) when we control for θ. In sum, our

main results in Figure 4 demonstrate that (i) coordination frequency depends systematically

on θ and that (ii) increasing the precision with which subjects process information about θ

increases the likelihood of coordination.

5.2 Structural Estimation

In this subsection we quantitatively compare the fits of each of the three different models

discussed in Section 3: cognitive noise equilibrium, QRE, and Level-k. As with the reduced

20The results in Table 1 are restricted to those rounds where 46 < θ < 64. One reason for this restriction
is because theory predicts that behavior will be more sensitive to θ in the low volatility condition only for
values of θ sufficiently close to 55 (see upper panel of Figure 2). Thus, restricting our tests to those values
of θ close to 55 provides a more targeted test of the theory. Also note that by design, we have many fewer
rounds for which θ < 47 or θ > 63, which comprises the “dominance region”. Our theory of cognitive noise
predicts that even among these games, subjects are subject to noise, and thus will choose a dominated action
with positive probability. To test this prediction, we first pool games across conditions because of the limited
sample size. We find that subjects choose the dominated action of “not invest” on 8.5% of rounds where
θ < 47. When regressing the probability of investing on θ for rounds when θ < 47, we find a negative,
though statistically insignificant coefficient. When θ > 63, subjects choose the dominated action of “invest”
on 12.8% of rounds. When regressing the probability of investing on θ for rounds where θ > 63, we find
a negative and statistically significant relationship. These results are therefore consistent with our model
of cognitive noise, whereby cognitive noise is apparent in the dominance region, and its impact on choice
becomes more consequential as θ moves closer to the cutoff of 55.
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form analyses reported in the previous subsection, here we exclude rounds 1-30 and any

rounds for which the subject executed a decision in less than 0.5 seconds. We use all re-

maining data in our structural estimation and we do not place any restriction on the value

of θ.21

We begin by estimating the cognitive noise equilibrium model, assuming that the cogni-

tive noise parameter, ωC , is homogenous across subjects. In equilibrium, the probability of

investing is given by the following equation:

IP(Invest|θ, ωC , σθ) = Φ

(
55− θ

ωCσθ

)
, (3)

where Φ(·) is the cumulative density function of the standard normal.22 We estimate the

one free parameter in the model, ωC , using maximum likelihood estimation. We maximize

the following log-likelihood function over ωC , using data from all 300 subjects:

LL (ωC) =
300∑
i=1

300∑
t=31

yit · log (IP(Invest|θt, ωC , σθ,i)) + (1− yit) · log(1− IP(Invest|θt, ωC , σθ,i)),

(4)

where yit denotes subject i’s choice in round t, with yit = 1 if the subject chooses to invest

and yit = 0 if the subject chooses not to invest. We maximize Equation (4) using both the

Optim package in Julia and a grid search method to ensure the best fitting parameter does

not depend on the maximization algorithm. We find that the log-likelihood is maximized at

the parameter value ωC = 1.057, and the value of the maximized log-likelihood is -40,269.

Note that even though we restrict ωC to be the same across each of our two experimental

conditions, the estimated model still predicts different behavior across the two conditions as

the condition-specific volatility parameter σθ appears in equation (3).

We use the same estimation procedure for the probit QRE model, which predicts that

the probability of investing is given by:

21The cognitive noise model predicts that choice sensitivity to θ is greater in the low volatility condition
when θ is sufficiently close to 55. Hence in the reduced form regressions that we report in the previous
subsection, we restricted the analysis to θ ∈ (46, 64). This restriction is not necessary in our structural
estimation, and thus we additionally include those rounds for which the value of θ is inside the dominance
regions. Moreover, including all values of θ in the structural estimation allows for a cleaner comparison of
model fits with the Level-k and QRE models.

22When ωC is sufficiently high, the CNE model can generate multiple equilibria for some values of
θ. In particular, the multiple equilibria are characterized by different values of k∗ in the equation,

IP(Invest|θ, ωC , σθ) = Φ
(

k∗−θ
ωCσθ

)
. To provide a conservative estimate of the in-sample fit of the CNE model,

when there are multiple equilibria for a given (ωC , θ) pair, we select the equilibrium k∗ threshold that
minimizes the likelihood of the observed choice.
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IP(Invest|θ, σQ) = ϕ(p, θ) = Φ

(
47 + p[16]− θ√

2σQ

)
, (5)

where p is the player’s belief about the probability that his opponent invests and Φ(·) is the
cumulative density function of the standard normal. A QRE then requires that p is a fixed

point, conditional on θ; i.e., a QRE is a solution to p = ϕ(p, θ). We again use maximum

likelihood to estimate the model, and estimate the parameter σQ, assuming it is homogenous

across the subject population. In particular, we substitute equation (5) into the right-hand

side of equation (4). The log-likelihood is maximized at the parameter value σQ = 12.574,

and the value of the maximized log-likelihood is -41,256.23

The third behavioral model we estimate is the Level-k model. This model also has

one free parameter, f0, which represents the fraction of “level-0” types in the population.

Specifically, the model predicts that the probability of investing is given by:

IP(Invest|θ, f0) =


f0

1
2
+ (1− f0), if θ < 55

1
2
, if θ = 55

f0
1
2
, if θ > 55,

(6)

We proceed by substituting equation (6) into the right-hand side of equation (4) and

maximizing over f0. We find that the log-likelihood is maximized at the parameter value

f0 = 0.418, and the value of the maximized log-likelihood is -40,971.

Because each of the three models we estimate in this section has a single free parameter,

one can assess the model fits by simply ranking the maximized log-likelihood values. Table

2 summarizes the best-fitting parameter for each model and the associated maximized log-

likelihood value. We find that the CNE model fits best, followed by the Level-k model, and

then finally the QRE model. One intuition for why the CNE model attains the best in-sample

fit, is because it is the only model of the three that allows behavior to depend directly on the

experimental condition (through the volatility parameter σθ). Figure 4 clearly shows that

conditional on θ, behavior does depend systematically on the experimental condition.

In principle, one could allow the single free parameter in each of the three models to

depend on the experimental condition. This would lead to better fits for the QRE and Level-

k models. However, we emphasize that this flexibility is not motivated by any of the three

23For some values of the parameter pair (σQ, θ), the QRE model predicts multiple equilibria. In these
instances, we select the equilibrium that maximizes the likelihood given the subject’s choice. While this
equilibrium selection procedure is ad-hoc, it clearly gives QRE the best shot of attaining a maximized
log-likelihood value that exceeds that of the competing models.
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theories, including CNE. The only reason that CNE predicts that choice probabilities should

vary across conditions is because the condition-specific prior contains valuable information

about the perception of θ. This dependence on the prior is not predicted by the QRE or

Level-k models, and hence σθ does not appear in equations (5) or (6) (while it does appear

in equation (4)). In sum, we adhere to the restrictions imposed by equations (4), (5), and

(6) where the single free parameter in each of the three models is constrained to be the same

across experimental conditions.

Table 2: Structural Estimates

Model Parameter Log L̂ AIC BIC

Cognitive Noise Equilibrium ωC = 1.057 −40269 80540 80550

Quantal Response Equilibrium σQ = 12.574 −41256 82514 82523

Level-k Thinking f0 = 0.418 −40971 81945 81954

6 Experiment on Decomposing Structural Uncertainty

and Strategic Uncertainty

In our model, the only source of strategic uncertainty is cognitive noise. That is, the only

reason a player is uncertain about her opponent’s behavior is because of uncertainty about

the opponent’s perception of θ (see inequality (1)). In reality, there are surely other sources

of strategic uncertainty besides cognitive noise. For example, there may be uncertainty

about which of multiple equilibria (of the complete information version of the game) the

opponent is playing. Other possible sources include uncertainty about the opponent’s degree

of rationality or preferences. The stochastic behavior we observe in Figure 4 can therefore

be a consequence of noise in processing θ or alternative sources of strategic uncertainty.

Our objective in this section is to quantitatively assess how much of the observed noise in

behavior can be attributed to cognitive noise and how much is driven, instead, by other

sources of strategic uncertainty.

To address this question, we conduct a second experiment in which a new sample of

subjects plays the same simultaneous move game as in the previous experiment. The only

difference is that, here, subjects are told that their opponent is a computer that plays a known
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and deterministic strategy. In particular, we tell subjects that the computerized opponent

chooses to invest if and only if θ < 55. Thus, the computerized opponent’s strategy coincides

with the unique equilibrium strategy in the game where each player has a small amount of

cognitive noise about θ.24 This treatment should, therefore, eliminate strategic uncertainty

— except for the strategic uncertainty that is induced by a subject’s own imprecision of θ.

6.1 Experimental Design and Procedures

As in the previous experiment, we incentivize subjects to play the simultaneous move game

described in Figure 1. In the previous experiment, we manipulated the distribution from

which θ is drawn in each round. Here, we use the distribution from the high volatility con-

dition in the previous experiment, where θ ∼ N(55, 400), but we tell subjects that their

opponent is a computer. Subjects play three hundred rounds of the game, where the only

difference across games is the random value of θ. Because we tell subjects that the comput-

erized opponent will invest if and only if θ < 55, the subject has a dominant strategy for all

θ: invest if and only if her noisy signal of θ is less than 55.25

We pre-register the experiment and recruit 100 subjects from Prolific.26 We apply the

same recruitment restrictions as in the previous experiment. The experimental instructions

are in Online Appendix C. Subjects are paid 2 GBPs for completing the experiment and are

also paid according to the outcome on one randomly drawn round. Unlike in the previous

experiment, here, the outcome depends exclusively on the subject’s own decision since the

computerized opponent plays a known and deterministic strategy. The median duration of

the experiment was around 21 minutes and the average earnings, including the participation

fee, were 6.30 GBPs.
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Figure 5: Empirical Frequency of Investing as a Function of Opponent Type Note:
For each value of θ between 47 and 63, we plot the proportion of rounds on which a subject
chooses to invest. The Algorithm condition denotes the data collected in the additional
experiment where the subject plays against a computerized opponent. The Human condition
denotes the data collected in the high volatility condition from our main experiment. Data
are pooled across subjects for all rounds 1-300. Vertical bars inside each data point denote
two standard errors of the mean. Standard errors are clustered by subject.

6.2 Experimental Results

Following our pre-registration, we restrict our analysis to rounds where θ ∈ [47, 63] and where

the subject executes a decision with a response time greater than 0.5 seconds. Our focus

24In the game where each human player has cognitive noise, player i is indifferent between investing
and not investing when (a) E[θ|Si] = 55 and (b) player i believes his human opponent follows the strategy
prescribed by the unique equilibrium from Proposition 1. Because our goal here is to completely remove
any uncertainty about the opponent’s strategy that is not induced by noisy perception of θ, we design the
computerized opponent to play a deterministic strategy when θ = 55, namely, not invest with probability 1.
As a consequence, in the game where θ = 55, the best response of a human subject who perceives θ without
noise is not to invest. This is consistent with the (indeterminate) best response to equilibrium beliefs in the
game where each human player has cognitive noise. Because our design choice for the computer strategy
when θ = 55 is arbitrary, we show below that our results are robust to removing games for which θ = 55.

25For other experiments where a game is reduced to an individual decision problem by using computerized
opponents, see Roth and Murnighan (1978), Fehr and Tyran (2001), Esponda and Vespa (2014), and Koch
and Penczynski (2018).

26The pre-registration document is available at: https://aspredicted.org/339 B5N.
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is on comparing behavior when subjects play against a computerized opponent (Algorithm)

with behavior from the high volatility condition from the previous experiment (Human). By

fixing the prior distribution across conditions, we control for any efficient coding effects.

Figure 5 plots the data from both the Algorithm and Human conditions. If subjects had

noiseless perception and were implementing the optimal strategy, then we should observe

a step function around θ = 55. Instead, one can see that there is obviously noise in both

conditions. However, behavior appears less noisy in the Algorithm condition compared to

the Human condition.

To formally investigate the difference in noise across conditions, we run a linear mixed

effects regression where the dependent variable is a dummy that takes on the value 1 if

the subject invests and is 0 otherwise. The independent variables are (θ − 55), the dummy

variable Human which indicates whether the observation is in the Human condition, and

the interaction between (θ−55) and Human. There are random effects on the intercept and

on (θ− 55). Column (1) of Table 3 shows that the estimated coefficient on θ is significantly

negative while the coefficient on the interaction term is significantly positive. These results

indicate that the probability of investing declines with θ in both conditions, but also that

this probability declines more rapidly in the Algorithm condition.

One concern with the previous test about existence of noise in the Algorithm condition is

that, even under the null hypothesis of zero noise in the Algorithm condition, the estimated

coefficient on θ would be negative (as long as there is some measurement error). This

is because the probability of investing drops from 1 to 0 when θ crosses 55. However,

continuing under the null hypothesis of zero noise, there should be no variation in behavior

when conditioning on values of θ > 55; similarly, there should be no variation in behavior

when conditioning on values of θ < 55. In columns (2) and (3) of Table 3, we show that

the coefficient on θ remains significantly negative in both subsamples. Therefore, in the

Algorithm condition, the probability of investing declines for θ ∈ [47, 54] and it also declines

for θ ∈ [56, 63]. This is consistent with the predictions of our model of cognitive noise.

In sum, there are two main takeaways from Table 3: when subjects play a simultaneous

move game against a computerized opponent, (i) we continue to detect substantial noise

in behavior (and the pattern of noise is consistent with our model)27 and (ii) the noise

is smaller compared to when subjects play against a human opponent. We attribute the

reduction of noise to alternative sources of strategic uncertainty that are present in our

original experiment and are not driven by imprecision over θ.

To quantitatively assess how much noise in behavior can be attributed to perceiving θ

compared to other sources of noise, we estimate the amount of noise in each condition non-

27We provide a more detailed analysis of noise at the indiviudal subject level in Online Appendix E.
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parametrically. For each subject and each round, we code behavior as “consistent” if and

only if the subject chooses the action prescribed by the threshold strategy of “choose invest

if and only if θ < 55”. If a decision is not coded as consistent, we attribute the decision

to noise.28 We find that, in the Human condition, 31.8% of decisions are driven by noise.

In the Algorithm condition, noisy behavior drops significantly to 15.2% of decisions (and

the difference is statistically significant at the 0.1% level).29 Thus, about half of the noise

from the Human condition appears to be driven by imprecision in θ while the other half is

driven by alternative factors outside our model. Our interpretation is that perceptual noise

drives a substantial portion of observed noise in the Human condition, but that there are

clearly other important sources of noise that reflect uncertainty about the human opponent’s

strategy, preferences, or information. These latter sources of uncertainty are shut down by

design in our Algorithm condition. We note that the approximately 50% reduction in noise

observed when moving from the Human to the Algorithm condition depends on the baseline

level of noise in the Human condition. Therefore, the exact magnitude of this reduction may

not generalize beyond our setting.

7 Discussion

7.1 A Potential Alternative Explanation: Learning

When presenting our main experimental results in Table 1, we showed that the treatment

effect becomes stronger as the experiment progresses. We attribute this result to subjects

learning about the prior over the course of the experiment. Here, we examine whether a

learning mechanism on its own can also generate our main treatment effect, rather than just

the strengthening of the treatment effect across rounds of the experiment. To address this

question, we consider two broad classes of learning models. The first class of models involves

learning with feedback. Camerer (2003) reviews several models of learning with feedback, in-

cluding reinforcement learning, belief-based learning, direction learning, experience-weighted

attraction, anticipatory learning, and imitation. Each theory takes as input some form of

feedback from past play, whether it be about a player’s own choice or (foregone) payoff,

or an opponent’s choice or payoff. These theories provide rich predictions about dynamics.

However, none of these theories is applicable to our experimental setting because we do not

28For the remaining analyses in this section, we discard observations for which θ = 55. This restriction is
outlined in our pre-registration and is due to the fact that there is no way to unambiguously code behavior
in the human condition (because subjects should be indifferent when θ = 55).

29When lifting the restriction that θ ∈ [47, 63], we find that, in the Human condition, 17.7% of decisions
are driven by noise, compared to 11.8% in the Algorithm condition and the difference remains statistically
significant (p = 0.013).
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Dependent Variable: Pr(Invest) (1) (46 < θ < 64) (2) (55 < θ < 64) (3) (46 < θ < 55)

(θ − 55) -0.063∗∗∗ -0.010∗∗∗ -0.007∗∗∗

(0.004) (0.003) (0.002)

(θ − 55) x Human 0.023∗∗∗

(0.004)

Human 0.128∗∗∗

(0.019)

Constant 0.494∗∗∗ 0.210∗∗∗ 0.823∗∗∗

(0.008) (0.029) (0.023)

Observations 24,966 4,639 4,717

Table 3: Comparing Behavior Across Human and Algorithm Condition Note: Table
displays results from mixed effects linear regressions. Observations are at the subject-round
level. The dependent variable takes value 1 if the subject chooses to Invest and 0 otherwise.
The variable Human takes value 1 if the round belongs to the Human condition and 0
otherwise. Column (1) includes data from both the Human and Algorithm conditions and
results are robust to excluding games where θ = 55. Columns (2) and (3) include data
only from the Algorithm condition. There are random effects on (θ− 55) and the intercept.
Standard errors are clustered at the subject level and shown in parentheses. ***, **, * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

provide any feedback to subjects. Indeed, we designed our experiment intentionally to shut

down these channels by construction, which enables a clean test of our cognitive noise model.

We next consider frameworks in which a player can learn without explicit feedback. In

contrast to the models mentioned in the previous paragraph, learning without feedback can

operate through introspection. For example, Weber (2003) finds that subjects’ behavior

in a competitive guessing game converges towards the predicted equilibrium even when no

feedback is given. Rick and Weber (2010) demonstrate that (especially) in the absence of

feedback, subjects can learn a strategic principle (e.g., iterated dominance) in one game and

they can transfer this knowledge to a different game. If learning without feedback is to

explain the pattern in Figure 4, then it needs to explain (i) the continuous and monotonic

relationship between the probability of investing and θ, and (ii) the fact that the relationship

is steeper in the low volatility condition. This is a high bar for a model of learning without

feedback, since it needs to generate both the unique threshold equilibrium and the context-

dependent equilibrium outcomes.

Nonetheless, to make some progress in empirically testing the hypothesis that subjects

are learning without feedback, let us assume that a learning without feedback model can

deliver the prediction that players exhibit a decreasing relationship between the probability
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of investing and θ. We can then test whether learning without feedback can generate the

heightened sensitivity of behavior to θ in the low volatility condition compared to the high

volatility condition. Table 4 presents results where we restrict the analysis to subsamples

based on how many times a subject has previously observed and responded to the exact

same game (characterized by the identical value of θ).

The first column restricts to those rounds on which subjects in the low and high volatility

conditions have previously observed 3 games with the same value of θ as in the current round.

Columns (2) – (4) further restrict the data based on more and more experience with a given

game. This approach assumes that learning about how to play a given game occurs through

introspection and depends solely on prior experience with that exact game. While restrictive,

this assumption provides a simple way to examine whether parameter-specific experience

can explain observed treatment effects. The regression results indicate that our treatment

effect obtains among each of the different subsamples (at the 1% significance level). Thus,

this specification of learning without feedback cannot explain the entire treatment effect we

observe.

Dependent Variable: Pr(Invest) (1) (2) (3) (4)

(θ − 55) -0.039∗∗∗ -0.040∗∗∗ -0.042∗∗∗ -0.044∗∗∗

(0.003) (0.003) (0.003) (0.004)

(θ − 55) x Low -0.017∗∗∗ -0.018∗∗∗ -0.017∗∗∗ -0.019∗∗∗

(0.004) (0.004) (0.004) (0.005)

Low -0.042 -0.038 -0.045 -0.056

(0.026) (0.028) (0.028) (0.030)

Constant 0.625∗∗∗ 0.614∗∗∗ 0.624∗∗∗ 0.629∗∗∗

(0.019) (0.021) (0.020) (0.022)

Observations 4249 4001 3582 3065

Rounds of Experience with Game (θ) 3 4 5 6

Table 4: Controlling for Experience with θ. Note: Table displays results from mixed ef-
fects linear regressions. Observations are at the subject-round level. The dependent variable
takes value 1 if the subject chooses to Invest and 0 otherwise. The variable Low takes value
1 if the round belongs to the low volatility condition and 0 otherwise. Only data from rounds
where 46 < θ < 64 are included in the regressions. There are random effects on (θ− 55) and
the intercept. Standard errors are clustered at the subject level and shown in parentheses.
***, **, * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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7.2 Connection with Rational Inattention

The theory of rational inattention from Sims (2003) provides an alternative approach to

modeling an imprecise awareness of the fundamental parameter θ. Each player maximizes

the utility of taking the optimal action conditional on a noisy signal, net of the cost of

information acquisition. Typically, the cost of information is taken to be proportional to

the mutual information between the state θ and the noisy signal Si. Each player then

endogenously chooses an information structure, balancing the benefit of a higher utility

from better-informed action selection and the cost of gathering more precise information.

A standard result from the rational inattention literature applied to our game, is that in

equilibrium, the optimal signal structure involves at most two signal realizations (Woodford,

2009; Yang, 2015). Specifically, the optimal signal structure under the mutual information

cost function implies that one signal is realized if θ < θ∗ and the complementary signal is

realized when θ ≥ θ∗. Therefore, in equilibrium, there exists a discontinuous jump in the

probability of investing at the threshold θ∗ (Hébert and Woodford, 2021). This prediction is

counterfactual to the smooth and decreasing relationship between the probability of investing

and θ that we observe in each of our experimental conditions.

Because the optimal signal structure under a mutual information cost function entails

only two possible signals, the theory of rational inattention will also have difficulty generating

the difference in behavior we observe across our two experimental conditions. To see why,

note that when the prior distribution varies, the probability of investing will still optimally

take on only two values. Thus rational inattention cannot generate the greater sensitivity

of behavior to θ in the low volatility condition compared with the high volatility condition.

Aridor et al. (2025) analyze the data from our experiment and also discuss why rational

inattention has difficulty explaining salient aspects of our dataset.

7.3 Connection with Global Games Experiments

Our experimental results suggest that the noise in global games models can, in part, be

interpreted as errors stemming from cognitive constraints. That is, while the starting point

of the global games literature is that players behave “as if” they observe a noisy private

signal of a fundamental parameter, the interpretation through the lens of the cognitive noise

model is that such noisy signals are literally generated during the decision process. Thus,

the private signal assumption from the global games literature can be microfounded with

cognitive noise. Under the additional assumption of efficient coding, the cognitive noise and

global games models make different predictions about the effect of the prior on behavior.

The global games model does not predict that the signal structure will endogenously change
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with the prior, whereas our model and experimental results are consistent with such an

endogenous relationship.

There is also a close connection between our cognitive noise model and the idea from

Heinemann, Nagel and Ockenfels (2009) that behavior in a complete information coordi-

nation game can be interpreted as if players are observing a fundamental parameter with

noise. Like us, Heinemann, Nagel and Ockenfels (2009) conduct an experiment on coordi-

nation games and find behavior that is consistent with the unique equilibrium prediction

from global games, despite the fact that subjects are not given any explicit private signals.30

Those authors also structurally estimate a global games model and find a sizable standard

deviation of private signals.

However, Heinemann, Nagel and Ockenfels (2009) argue that the only source of the

estimated standard deviation of private signals is strategic uncertainty – and specifically,

strategic uncertainty that does not arise directly from structural uncertainty.31 Our second

experiment demonstrates that cognitive noise, and the induced structural uncertainty, plays

a sizeable role in explaining the observed amount of noisy behavior in the coordination game

with two human subjects. That is, we show that a large portion of observed noise in behavior

cannot be attributed to strategic uncertainty.

Another difference with respect to Heinemann et al. is that those authors emphasize the

role of risk aversion in their model, whereas our model does not rely on risk aversion at all.

One reason for this different emphasis on risk aversion is because Heinemann et al. appeal

to the notion that each player’s degree of risk aversion is private information. This implies

that player i is uncertain about player j’s degree of risk aversion, and this generates strategic

uncertainty, which in turn, is key to eliminating the multiple equilibria. Our model instead

assumes that players have irreducible uncertainty in observing θ due to cognitive noise, and it

is this information asymmetry that generates strategic uncertainty. Heinemann et al. do also

consider the alternative that players have common knowledge about their opponents’ degree

of risk aversion, but behave “as if” they receive private signals about monetary payoffs.

By adopting an “as is” interpretation of noise in private signals, we are able to generate

and test novel hypotheses about how the standard deviation of private signals varies across

environments.

At a conceptual level, our results also suggest an important implication for the global

games literature that has to do with the role of public vs. private signals. A series of papers

has argued that when an institution like the government or a financial market can generate

30In contrast, many other experiments on global games explicilty endow subjects with private signals, so
as to literally implement the assumption in the global games model (e.g., Schotter and Trevino (2021)).

31Heinemann, Nagel and Ockenfels (2009) argue that “Of course, players know the true payoff. Their
uncertainty about others’ behavior makes them behave as if they are uncertain about payoffs” (p. 203).
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public signals, then a unique equilibrium may no longer obtain in a global games model

(Atkeson, 2000; Angeletos and Werning, 2006; Hellwig, Mukherji and Tsyvinski, 2006). The

argument is that a sufficiently precise public signal can act as a coordination device, and

thus restore multiple equilibria. However, our theory and experimental results suggest that

there is an important difference between access to a public signal and precise processing of

a public signal. Specifically, even if all players have access to the public signal, each player

may encode the same public signal with noise and thus interpret it slightly differently. This

friction, driven by constraints that arise internally in the agent’s mind, transforms the public

signal into private information and makes it difficult to use the public signal as a coordination

device. Our results, therefore, imply that the provision of a public signal is not enough to

overturn the classic global games result. The ability to precisely perceive and process public

information is also necessary and, as we have shown, this cannot be taken for granted.

Such an interpretation is consistent with earlier experimental work on global games,

which finds that removing private information from the strategic environment still yields

behavior that is consistent with the unique global games equilbirium (Heinemann, Nagel

and Ockenfels, 2004). In the same vein, Szkup and Trevino (2020) conduct a global games

experiment in which they manipulate the standard deviation of noise in private signals, and

they include a treatment in which the standard deviation is 0, corresponding to a game of

complete information. Those authors find that all subjects in their complete information

treatment use threshold strategies, and a majority use the efficient threshold level. This

result obtains even though standard theory predicts multiple equilibria. If one departs from

standard theory and instead assumes that subjects perceive the fundamental with cognitive

noise, then this can generate a unique equilibrium where all players use the same threshold

strategy, which is largely consistent with the experimental results in Szkup and Trevino

(2020).

7.4 Noisy Coding vs. Efficient Coding

Our model assumes that each player is subject to noisy coding and efficient coding. The

noisy coding assumption implies that each player perceives θ with noise. The efficient coding

assumption implies that the conditional noisy signal distribution of θ depends on the player’s

prior beliefs about θ. Here we analyze whether noisy coding on its own is sufficient to generate

our observed treatment effect. In particular, suppose that each player still has a prior over θ

that reflects past experience. Further, suppose that in both experimental conditions, we set

the conditional distribution of Si to an arbitrary distribution. In particular, suppose it is the

distribution that arises under efficient coding in the high volatility condition. How does the
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model prediction of this alternative noisy coding model compare with the prediction from

our model summarized in Figure 2?

It turns out that in a model of noisy coding where priors are allowed to differ across

experimental conditions, the predictions for behavior in equilibrium will be identical across

the high and low volatility conditions in Experiment 1. The solid curve in Figure 2 will

become flatter and lie directly on top of the dashed curve. The intuition for why the predicted

treatment effect vanishes can be seen from Proposition 1. Specifically, Proposition 1 indicates

that a subject in our experiment invests if and only if the noisy signal about θ, Si, is less

than or equal to 55. In the absence of efficient coding, the conditional distribution of Si is

independent of the prior, and hence the probability of investing should not depend on the

prior.32 The main takeaway from this subsection is that a noisy coding model where priors are

allowed to differ across experimental conditions is unable to generate the context-dependent

probability of investing that we observe in our data.

7.5 Awareness of Cognitive Noise

Proposition 1 assumes common knowledge of cognitive noise. The assumption that the dis-

tribution of noise is common knowledge is standard in the global-games literature, primarily

because it ensures equilibrium uniqueness through limit arguments as the noise vanishes.

Relaxing this assumption by, for example, introducing higher-order uncertainty about σ can

potentially restore equilibrium multiplicity (Weinstein and Yildiz, 2007). However, provided

that uncertainty remains minimal at higher orders, the equilibrium predictions remain ro-

bust (Morris and Shin, 2003). Moreover, precise knowledge of the underlying information

structure is not necessary for the unique equilibrium to arise. As evident from the state-

ment of Proposition 1, the equilibrium exists regardless of the exact functional forms of the

prior and noisy signal distributions. It follows that the equilibrium exists even when players

have incorrect beliefs about the exact information structure (maintaining the assumption of

common knowledge of noise). This is important considering that, while we manipulate the

distribution of the prior in the laboratory, we do not control or measure the distribution of

the noisy signal.

Common knowledge of the noisy signal distribution requires that subjects know they are

imprecise and that others are imprecise. To investigate the validity of this assumption, we

32We note that the posterior belief about θ, E[θ|Si], will be a function of the prior, even in the absence
of efficient coding. For example, suppose that, as in Assumption 2, θ and εi are normal, θ ∼ N

(
µθ, σ

2
θ

)
and εi ∼ N (0, 1). Furthermore, and in contrast to Assumption 2, suppose that the variance of the noisy
signal distribution, σ2, does not vary with the prior variance (so that the efficient coding channel is turned
off). The posterior mean under the high volatility prior will be closer to the realization of θ, on average,
compared to the posterior mean under the low volatility prior.
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conduct a third experiment, where subjects are asked to classify whether a two-digit number

is greater than a reference level of 55 (which we choose to be the same as the threshold

in the unique equilibrium of the game in our main experiment). We incentivize subjects to

report their beliefs about (i) the average accuracy of all other subjects in the experiment and

(ii) their own accuracy. We find that subjects are aware of their own errors and of others’

errors in the classification task. Additionally, we find interesting evidence that subjects

are aware that other subjects make more errors when the fundamental is drawn from a high

volatility distribution compared to a low volatility distribution. We refer the reader to Online

Appendix B for more details from this additional experiment.

8 Conclusion

In this paper, we have experimentally investigated the mechanism that generates context-

dependent behavior in coordination games. In our first experiment, we find that the prob-

ability of investing is continuously declining in the fundamental parameter. This result is

not readily predicted by standard theory, which generates multiple equilibria and hence no

systematic relationship between the probability of investing and fundamentals. Instead, our

data is well-explained by a model in which each player perceives the (clearly displayed) fun-

damental parameter with unavoidable cognitive noise. The second and critical pattern we

observe in the data is that the sensitivity of behavior to fundamentals depends systematically

on the prior distribution from which the fundamental is drawn. Specifically, for a given coor-

dination game, behavior is noisier and coordination is less likely when subjects are adapted

to a high volatility distribution compared to a low volatility distribution. This pattern is

predicted by our model of cognitive noise equilbirium, under the assumption that subjects

efficiently code the fundamental. Importantly, we show that alternative theories such as

QRE and Level-k thinking cannot generate this context-dependent strategic behavior.

After establishing that cognitive noise is an important driver of behavior in the coor-

dination game, we conduct a second experiment to quantify how much of the observed

randomness in behavior can be attributed to cognitive noise. This second experiment mim-

ics our first experiment, except that we replace the human opponent with a computerized

opponent whose strategy is known and deterministic. Such a design enables us to shut down

any strategic uncertainty, and we argue that any remaining variability in behavior is likely to

come from imprecise perception and retrieval of fundamentals. We find that when subjects

play a computerized opponent, there is still substantial randomness in behavior, but the

amount of randomness is reduced by 50% relative to behavior when subjects play against a

human opponent. Our interpretation is that cognitive noise is a substantial driver of behav-
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ior in coordination games, but there are clearly additional sources of strategic uncertainty

that are just as important in explaining behavior.

We believe our analysis paves the way for at least two directions of future work on

cognitive noise in games. First, there are additional theory-guided manipulations of cognitive

noise which have recently been deployed in individual decision-making experiments, that

could be explored in a strategic environment. For example, Polania, Woodford and Ruff

(2019) show that cognitive noise can be amplified by imposing time pressure on decisions, and

Enke and Graeber (2023) ramp up cognitive noise by increasing the complexity of an action.

In our setting, a clear untested prediction is that imposing time pressure should lead the

distribution of actions in equilibrium to be compressed towards 50-50, so that the probability

of coordination can be modulated by the experimenter. The second direction is along a

more theoretical route. Our current framework is confined to a stylized 2 × 2 coordination

game, but we believe there may be much richer implications of cognitive noise in more

general strategic environments. In particular, the idea that public signals are universally

processed with noise due to cognitive errors is likely to have important implications for

strategic behavior in a much broader class of games.

Appendix

A Model with Endogenous Noisy Coding

In this Appendix, we present a model that endogenously delivers the relationship between

prior variance and signal variance that is captured in Assumption 2 from Section 3.2. We

begin by first introducing an encoding function, m(θ), which maps θ into a real-valued

quantity, which in turn, is used to generate the noisy signal, Si:

Assumption 3 (Normally-Distributed Cognitive Noise) Each player i, i = {1, 2},
has a common prior belief that θ is distributed normally, θ ∼ N (µθ, σ

2
θ). Conditional on

the realized value of θ, each player observes a noisy signal, Si = m(θ) + εi, where each εi is

independently and normally distributed: εi ∼ N (0, σ2
S) with σ

2
S > 0.

We now draw on principles from psychology to put further structure on m(θ), which will

have direct implications for the distribution of Si. Following Khaw, Li and Woodford (2021),

we constrain the encoding function, m(θ), to be linear in θ and have a bounded variance:33

33Khaw, Li and Woodford (2021) assume a slightly different specification of the encoding function, which
is linear in the logarithm of a payoff value. See their Appendix C for details.
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Assumption 4 (Encoding Function) The encoding function is linear: m(θ) = ξ + ψθ.

In addition, there is a power constraint, E[m2] ≤ Ω2 <∞.

The power constraint captures the idea that the brain cannot encode an arbitrarily large set of

values. Without the power constraint, the player could choose the noisy signal, Si = m(θ)+εi,

to be arbitrarily precise by making the variance of m(θ) as large as needed. By introducing

the power constraint, it becomes harder for a player to discriminate between two fundamental

values as they become closer together. Specifically, for any two fundamental values θ1 <

θ2, it is more difficult for the player to discriminate between the two values as |θ1 − θ2|
approaches zero. This assumption is in the spirit of the cost functions proposed by Hébert and

Woodford (2021) and Morris and Yang (2022). Given the cognitive constraints summarized

by Assumption 4, we allow the player to choose the encoding function parameters, (ξ, ψ). In

this manner, the player can efficiently code information about the fundamental to achieve

a performance objective. To close the model, we need to specify the performance objective

which drives the players’ optimal choice of the encoding function parameters.34

Assumption 5 (Performance Objective) Players choose the encoding function which

minimizes the mean squared error between θ and its conditional mean, E[θ|Si].

With the player’s performance objective in hand, we can now derive the efficient coding

function that each player optimally chooses, given her cognitive constraints.

Proposition 3 (Endogenous Efficient Coding) Given Assumptions 3–5, the optimal en-

coding function features ξ⋆ = − Ω
σθ
µθ and ψ⋆ = Ω

σθ
. Consider the transformed internal rep-

resentation, Zi ≡ (Si − ξ⋆)/ψ⋆. The conditional distribution of Zi is N (θ, ω2σ2
θ), where

ω = σS/Ω. The variance of Zi is proportional to the variance of θ.

Proposition 3 says that the player chooses the slope of the encoding function, ψ⋆, such

that it becomes steeper as the variance of the prior shrinks. Intuitively, for a given change in

θ, a good encoding function is one that exhibits a large change in signal. As the variance of

the prior shrinks, signals can become more sensitive to a change in θ while still satisfying the

power constraint. Indeed, the important implication of Proposition 3 for our purposes is that

the noisy signal distribution is normalized by the prior variance. While this “normalization”

result is derived from our assumptions of the power constraint and the linear encoding

function, it is a robust implication of efficient coding that arises in a more general class of

models (Polania, Woodford and Ruff, 2019; Khaw, Li and Woodford, 2021; Frydman and

Jin, 2022; Payzan-LeNestour and Woodford, 2022).

34Online Appendix A shows robustness to different assumptions about the players’ performance objective.
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Given the optimal encoding function in Proposition 3, we can now solve for the equilibria

of the game. We restrict our analyses to monotone equilibria of the incomplete informa-

tion game, that is, equilibria in which actions are monotonic in the transformed internal

representation, Zi. In such a monotone equilibrium, a player’s mutual best response is to

choose Invest if and only if her transformed internal representation is below a threshold k⋆.

To derive the equilibrium, we adapt results from the global games literature (Carlsson and

Van Damme, 1993; Morris and Shin, 2003; Morris, 2010) to the game in Figure 1, with the

further assumption that µθ = (a + b)/2 (as in our experiments). We can then establish

there exists a monotone equilibrium such that player i invests if and only if Zi ≤ µθ, for any

value of σθ, σS and Ω. Furthermore, if the noise in the transformed internal representation

is sufficiently small, this is the unique monotone equilibrium.

Proposition 4 (Equilibrium Existence and Uniqueness) Suppose Assumptions 3–5 and

µθ = (a + b)/2. There exists an equilibrium of the game where each player invests if and

only if Zi ≤ µθ (or, equivalently, E[θ|Zi] ≤ µθ). Moreover, if ω
√
1+ω2√
2+ω2 <

√
2π

(b−a)σθ, this is the

unique monotone equilibrium of the game.

Proposition 4 implies a rich set of comparative statics with respect to θ. The probability

of investing is pinned down by the distribution of the transformed internal representation:

Pr[Invest|θ] = Pr [Zi ≤ µθ|θ] = Φ
(
µθ−θ
ωσθ

)
, where Φ(·) is the cumulative density function of

the standard normal. This result indicates that, in the unique monotone equilibrium, the

probability of investing is continuous and monotonically decreasing in θ.

We can make an even starker prediction about equilibrium outcomes by exploiting the

malleability of the encoding function. The probability of investing depends not only on θ,

but also on the prior distribution from which θ is drawn. Specifically, σθ modulates the

optimal encoding function and, therefore, the precision with which a player detects whether

a fundamental crosses the equilibrium threshold. It follows that the probability of investing

declines more rapidly in θ as the prior volatility decreases. This prediction is summarized in

the following proposition.

Proposition 5 (Comparative Statics) Suppose Assumptions 3–5, µθ = (a + b)/2, and
ω
√
1+ω2√
2+ω2 <

√
2π

(b−a)σθ. In the unique monotone equilibrium of the game, the probability that each

player invests for a given value of θ is Pr[Invest|θ] = Φ
(
µθ−θ
ωσθ

)
. Decreasing the variance of

θ will increase the sensitivity of choices to θ (that is, the rate at which Pr[Invest|θ] decreases
with θ) for values of θ close to µθ.
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B Proofs

Proof of Proposition 2

As discussed above the statement of the proposition, when σ is sufficiently small, Pr(Invest|θ)
is well approximated by Pr(Si < θ⋆|θ). Since Si = θ + σεi and θ

⋆ = (a+ b)/2, we have:

Pr(Invest|θ) ≈ Pr(Si < θ⋆|θ) = Pr(θ + σεi < (a+ b)/2)

= Pr

(
εi <

(a+ b)/2− θ

σ

)
= G

(
(a+ b)/2− θ

σ

)
,

where G(·) is the cumulative density function of εi. By Assumption 1, G(·) is continuous

and strictly increasing in its argument, h(θ, σ) = (a+b)/2−θ
σ

. Since h(θ, σ) is continuous in θ,

it follows that Pr(Invest|θ) is continuous in θ. Moreover, we have

∂h(θ, σ)

∂θ
= − 1

σ

∂h(θ, σ)

∂θ∂σ
=

1

σ2

The first line means that h(θ, σ) is strictly decreasing in θ and, thus, Pr(Invest|θ) ≈
G (h(θ, σ)) is strictly decreasing in θ. The second line means that the rate at which h(θ, σ)

decreases in θ is decreasing in σ (note that ∂h(θ,σ)
∂θ

is negative and, thus, the positive sign of
∂h(θ,σ)
∂θσ

means that ∂h(θ,σ)
∂θ

increases in σ while still remaining negative). Therefore, the rate

at which Pr(Invest|θ) ≈ G (h(θ, σ)) decreases in θ is decreasing in σ.

Proof of Proposition 3

Here we adapt the theoretical derivation of efficient coding from Khaw, Li and Woodford

(2021) to our framework where the distribution of θ is normal rather than lognormal. Ac-

cording to Assumption 3, the internal representation S of θ is drawn from

S|θ ∼ N(m(θ), σ2
S)

where the encoding rule, m(θ), is a linear transformation of θ, m(θ) = ξ+ψθ, which satisfies

the power constraint in Assumption 4. Parameters ξ and ψ are endogenous while the preci-

sion parameter σS is exogenous. The efficient coding hypothesis requires that the encoding

rule m(θ) is chosen (among all linear functions satisfying the constraint) so as to maximize

43



the system’s objective function, for a given prior distribution of θ. As in Khaw, Li and

Woodford (2021), we assume that the system produces an estimate of θ on the basis of S,

θ̃(S), and that the goal of the design problem is to have a system that achieves as low as

possible a mean squared error of this estimate. Given a noisy internal representation, the

estimate which minimizes the mean squared error is E[θ|S] for all S. The goal of the design
problem is, thus, to minimize the variance of the posterior distribution of θ.

Consider the transformed internal representation, Z ≡ (S − ξ)/ψ. The distribution of

the transformed internal representation conditional on θ is Z|θ ∼ N(θ, σ2
S/ψ

2). Thus, the

distribution of θ given the transformed internal representation is

θ|Z ∼ N

(
µθ +

σ2
θ

σ2
θ + (σ2

S/ψ
2)
(Z − µθ),

σ2
θ(σ

2
S/ψ

2)

σ2
θ + (σ2

S/ψ
2)

)
(7)

The variance of the posterior distribution of θ is strictly increasing in the variance of

Z, σ2
S/ψ

2. Thus, it is desirable to make ψ as large as possible (in order to make the mean

squared error of the estimate as small as possible) consistent with the power constraint.

When the distribution of θ is normal, we have

E[m2] = ξ2 + ψ2E[θ2] + 2ξψE[θ] = (ξ + ψµθ)
2 + ψ2σ2

θ ≤ Ω (8)

The largest value of ψ consistent with this constraint is achieved when

ξ = −ψµθ , ψ =
Ω

σθ
(9)

Thus, m⋆(θ) = − Ω
σθ
µθ +

Ω
σθ
θ and

Z|θ ∼ N

(
θ,
σ2
S

Ω2
σ2
θ

)
(10)

The same optimal coding rule obtains under an alternative goal of the system. Consider

the more conventional hypothesis from sensory perception literature, whereby the encoding

rule is assumed to maximize the Shannon mutual information between the objective state

θ and its subjective representation S. Denote with ρθ the precision of θ and with ρS the

precision of S. We have θ ∼ N
(
µx,

1
ρθ

)
, S|θ ∼ N

(
ξ + ψθ, 1

ρS

)
, Z|θ ∼

(
θ, 1

ρZ

)
, and θ|Z ∼

N
(
ρθµθ+ρZZ
ρθ+ρZ

, 1
ρθ+ρZ

)
, where Z = S−ξ

ψ
and ρZ = ψ2/σ2

S. The Shannon mutual information

between θ and Z is

I(θ, Z) =
1

2
log2

(
σ2
θ

σ2
θ|Z

)
=

1

2
log2

(
1 +

ρZ
ρθ

)
(11)
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which is strictly increasing in ρZ and, thus, strictly decreasing in σ2
Z . This means that, as for

the previous goal, it is desirable to make ψ as large as possible (consistent with the power

constraint).

Proof of Proposition 4

First, we show that, when the conditions in the statement of the Proposition are satisfied,

there exists a unique monotone equilibrium of the game. Remember that Zi ∼ N (θ, σ2
Z),

where σ2
Z = ω2σ2

θ = (σ2
S/Ω

2)σ2
θ . Thus, player 1’s posterior distribution of θ given Z1 is

θ|Z1 ∼ N
(

σ2
Z

σ2
θ + σ2

Z

µθ +
σ2
θ

σ2
θ + σ2

Z

Z1,
σ2
θσ

2
Z

σ2
θ + σ2

Z

)
Therefore, we have:

EU [Not Invest|Z1] = E[θ|Z1] =
σ2
Zµθ + σ2

θZ1

σ2
θ + σ2

Z

On the other hand, player 1’s expected utility from investing is

EU [Invest|Z1] = a+ (b− a)Pr[Opponent Invests|Z1]

Assume player 1 believes his opponent uses a monotone strategy with threshold k. In

this case, player 1’s expectation that the opponent invests is Pr[Z2 ≤ k|Z1]. Player 1’s belief

about the distribution of Z2 given Z1 is:

Z2|Z1 ∼ N
(
E[θ|Z1] =

σ2
Z

σ2
θ + σ2

Z

µθ +
σ2
θ

σ2
θ + σ2

Z

Z1,
2σ2

θσ
2
Z + σ4

Z

σ2
θ + σ2

Z

)
Thus, we have:

Pr[Z2 ≤ k|Z1] = Φ

(
(σ2

θ + σ2
Z) k − σ2

Zµθ − σ2
θZ1√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

)

where Φ(·) is the cumulative distribution of the standard normal.

Player 1’s best response is to invest if and only if

σ2
Zµθ + σ2

θZ1

σ2
θ + σ2

Z

≤ a+ (b− a)Φ

(
(σ2

θ + σ2
Z) k − σ2

Zµθ − σ2
θZ1√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

)

If we write Z(k) for the unique value of Z1 such that player 1 is indifferent between

investing and not investing (this is well defined since player 1’s expected payoff from not
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investing is strictly increasing in Z1 and player 1’s expected payoff from investing is strictly

decreasing in Z1), the best response of player 1 is to follow a monotone strategy with threshold

equal to Z(k), that is, to invest if and only if Z1 ≤ Z(k).

Observe that as k → −∞ (that is, player 2 never invests), EU [Invest|Z1, k] tends to a,

so Z(k) tends to
(σ2

θ+σ
2
Z)a−σ2

Zµθ

σ2
θ

. As k → ∞ (that is, player 2 always invests), EU [Invest|Z1]

tends to b, so Z(k) tends to
(σ2

θ+σ
2
Z)b−σ2

Zµθ

σ2
θ

. A fixed point of Z(k) — that is a value k⋆ such

that Z(k⋆) = k⋆ — is a monotone equilibrium of the game where each player invests if and

only if his signal is below k⋆. Since Z(k) is a mapping from R to itself and is continuous

in k, there exists k ∈
[
(σ2

θ+σ
2
Z)a−σ2

Zµθ

σ2
θ

,
(σ2

θ+σ
2
Z)b−σ2

Zµθ

σ2
θ

]
, such that Z(k) = k and a threshold

equilibrium of this game exists.

When is there a unique equilibrium? Define W (Z(k), k) as

W (Z(k), k) =
σ2
Zµθ + σ2

θZ(k)

σ2
θ + σ2

Z

− a− (b− a)Φ

(
(σ2

θ + σ2
Z) k − σ2

Zµθ − σ2
θZ(k)√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

)

At a fixed point, Z(k⋆) = k⋆. Thus, we have:

W (k⋆) =
σ2
Zµθ + σ2

θk
⋆

σ2
θ + σ2

Z

− a− (b− a)Φ

(
σ2
Z√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

(k⋆ − µθ)

)

Then,

∂W (k⋆)

∂k⋆
=

σ2
θ

σ2
θ + σ2

Z

− ϕ

(
σ2
Z√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

(k⋆ − µθ)

)
σ2
Z(b− a)√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

And there is a unique fixed point if and only if ∂W (k⋆)
∂k⋆

> 0 at the fixed point. When
∂W (k⋆)
∂k⋆

< 0, there are at least three fixed points. Since ϕ(y) ≤ 1√
2π
, this is a sufficient

condition for ∂W (k⋆)
∂k⋆

> 0:

σ2
θ

σ2
θ + σ2

Z

>
1√
2π

σ2
Z(b− a)√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

σ2
θ

√
2σ2

θσ
2
Z + σ4

Z

(b− a)σ2
Z

√
σ2
θ + σ2

Z

>
1√
2π

√
2π >

(b− a)σ2
Z

√
σ2
θ + σ2

Z

σ2
θ

√
2σ2

θσ
2
Z + σ4

Z

The condition ω
√
1+ω2√
2+ω2 <

√
2π

(b−a)σθ is obtained by replacing σZ = ωσθ in the condition above
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and re-arranging terms. Thus, this shows that, when the conditions in the statement of the

Proposition are satisfied, there exists a unique monotone equilibrium of the game.

Second, we show that, when µθ =
(a+b)

2
, there exists a monotone equilibrium of the game

where k⋆ = µθ for any value of σθ, σS and ω (or, equivalently, for any value of σθ and σZ).

Assume player 2 uses a threshold strategy where he invests if and only if Z2 ≤ k = µθ. Is

this an equilibrium, that is, is Z(µθ) = µθ? Z(µθ) is the value of Z1 such that the following

equation is satisfied with equality:

σ2
Zµθ + σ2

θZ1

σ2
θ + σ2

Z

= a+ (b− a)Φ

(
(σ2

θ + σ2
Z) k − σ2

Zµθ − σ2
θZ1√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

)
σ2
Zµθ + σ2

θZ1

σ2
θ + σ2

Z

= a+ (b− a)Φ

(
σ2
θµθ − σ2

θZ1√
2σ2

θσ
2
Z + σ4

Z

√
σ2
θ + σ2

Z

)

If we set Z1 = µθ, we get:

µθ = a+ (b− a)Φ (0)

µθ =
(a+ b)

2

which is true by one of the assumptions in the statement of the Proposition.

Proof of Proposition 5

From Proposition 4 and the condition in the statement of Proposition 5, we know that there

exists a unique monotone equilibrium of the game where each player invests if and only if his

transformed internal representation is smaller than µθ. In this equilibrium, Pr[Invest|θ] =
Pr [Zi ≤ µθ|θ] = Φ

(
µθ−θ
ωσθ

)
and

∂Pr[Invest|θ]
∂θ

= −ϕ
(
µθ−θ
ωσθ

)(
1
ωσθ

)
. Thus, Pr[Invest|θ] grows

with σθ if θ < µθ and it decreases with σθ is θ > µθ. Moreover, the sensitivity of choices to

θ decreses with σθ for values of θ around the cutoff.
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Indeed, we have

∂Pr [Invest|θ]
∂θ∂σθ

= ϕ

(
µθ − θ

ωσθ

)(
1

ωσ2
θ

)
+ ϕ′

(
µθ − θ

ωσθ

)(
µθ − θ

ωσ2
θ

)(
1

ωσθ

)
= ϕ

(
µθ − θ

ωσθ

)(
1

ωσ2
θ

)
−
(
µθ − θ

ωσθ

)
ϕ

(
µθ − θ

ωσθ

)(
µθ − θ

ωσ2
θ

)(
1

ωσθ

)
= ϕ

(
µθ − θ

ωσθ

)(
1

ωσ2
θ

)
− ϕ

(
µθ − θ

ωσθ

)(
(µθ − θ)2

ω3σ4
θ

)
= ϕ

(
µθ − θ

ωσθ

)(
ω2σ2

θ − (µθ − θ)2

ω3σ4
θ

)
which is positive if and only if (µθ − θ)2 < ω2σ2

θ .

(In the second line, we used the fact that ϕ′(x) = −xϕ(x).)
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Online Appendix

A Alternative Performance Objective in Model with

Endogenous Efficient Coding from Appendix A

Here we revisit the assumption about efficient coding in the model from Appendix A. The

specific performance objective that we assume there is only one of several plausible specifi-

cations (Ma and Woodford, 2020). In particular, there are other possible objective functions

that players may have, besides minimizing the mean squared error of the estimate of θ. For

example, a prominent alternative efficient coding objective from the literature on sensory

perception is to maximize the mutual information between the state and its noisy internal

representation. In the proof of Proposition 3, we confirm that the coding rule we use in our

model is robust to this alternative objective.

Yet another alternative objective that has been examined in the economics literature is

maximization of expected reward. In this section, we show that the result in Proposition 3 is

robust to using this alternative objective function. Specifically, we maintain the constraints

in Assumption 4 and we analyze a two-stage game. In the first stage, each player optimally

chooses, simultaneously and independently, the parameters of the encoding function. In the

second stage, players choose strategies in the simultaneous move game, conditional on their

chosen encoding function from the first stage. We show that the optimal encoding function

still takes the form characterized in Proposition 3. Thus, our theoretical predictions from

Appendix sec:normal˙model are robust to three performance objectives: (i) minimizing mean

squared error of the estimate of θ, (ii) maximizing mutual information between the noisy

internal representation and θ and (iii) maximizing expected reward.

Assumption 6 (Alternative Performance Objective) Players choose the encoding func-

tion which maximizes their expected reward in the simultaneous move game.

Consider the following two-stage game: in stage 1, each player i = {1, 2} chooses simul-

taneously and independently the parameters of his encoding function, (ξi, ψi), to maximize

the performance objective in Assumption 6 under the constraints in Assumption 4; in stage

2, players participate to the simultaneous move game endowed with the encoding functions

chosen in the previous stage. We solve this game by backward induction.

Stage 2: Simultaneous move Game (with Exogeneous Encoding Functions)

For each player i = {1, 2}, we have Si|θ ∼ N (mi(θ), σ
2
S), where mi(θ) = ξi + ψiθ.
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Consider the transformed internal representation Zi = (Si − ξi)/ψi. We have:

Zi|θ ∼ N
(
θ, β2

i

)
where βi = (σS/ψi).

Proposition 6 Suppose Assumptions 1, 2, 4 and µθ = (a + b)/2. Regardless of σθ, σS,

(ξ1, ψ1), and (ξ2, ψ2), there exists an equilibrium of the game where each player invests if

and only if Zi ≤ µθ. Moreover, if
σ2
θ

√
β2
i (2σ

2
θ+β

2
i )

(b−a)β2
i

√
σ2
θ+β

2
i

> 1√
2π

for all i = {1, 2}, this is the unique

monotone equilibrium of the game.

Proof. Since the likelihood function of Zi is conjugate to the prior distribution of θ, we have

a closed form solution for the distribution of player i’s posterior beliefs over θ. In particular,

player 1’s posterior distribution of θ given Z1 is

θ|Z1 ∼ N
(
β2
1µθ + σ2

θZ1

σ2
θ + β2

1

,
σ2
θβ

2
1

σ2
θ + β2

1

)
Thus, we have:

EU [Not Invest|Z1] = E[θ|Z1] =
β2
1µθ + σ2

θZ1

σ2
θ + β2

1

On the other hand, player 1’s expected utility from investing is

EU [Invest|Z1] = a+ (b− a)Pr[Opponent Invests|Z1]

Assume player 1 believes his opponent uses a monotone strategy with threshold k2. In

this case, player 1’s expectation that the opponent invests is Pr[Z2 ≤ k2|Z1]. Player 1’s belief

over the distribution of Z2 conditional on Z1 is:

Z2|Z1 ∼ N
(
β2
1µθ + σ2

θZ1

σ2
θ + β2

1

,
σ2
θ (β

2
1 + β2

2) + β2
1β

2
2

σ2
θ + β2

1

)
Thus, we have:

Pr[Z2 ≤ k2|Z1] = Φ

(
k2 (σ

2
θ + β2

1)− β2
1µθ − σ2

θZ1√
σ2
θ + β2

1

√
σ2
θ (β

2
1 + β2

2) + β2
1β

2
2

)

where Φ(·) is the cumulative distribution of the standard normal.

Player 1’s best response is to invest if and only if

β2
1µθ + σ2

θZ1

σ2
θ + β2

1

≤ a+ (b− a)Φ

(
k2 (σ

2
θ + β2

1)− β2
1µθ − σ2

θZ1√
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θ + β2
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θ (β

2
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2) + β2
1β

2
2

)
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Assume k2 = µθ. We want to show that player’s best response is to use the same cutoff.

In this case, player 1’s best response is to invest if and only if

E
β2
1µθ + σ2

θZ1

σ2
θ + β2

1

≤ a+ (b− a)Φ

(
σ2
θ (µθ − Z1)√

σ2
θ + β2

1

√
σ2
θ (β

2
1 + β2

2) + β2
1β

2
2

)

First, note that the LHS is a convex combination of µθ and Z1 and that, thus, it is a) equal

to µθ when Z1 = µθ, b) smaller than µθ when Z1 < µθ, and c) larger than µθ when Z1 > µθ.

Second, remember that µθ = (a + b)/2 and note that the RHS is a) equal to µθ when the

argument of Φ(·) is 0 (that is, when Z1 = µθ, since the denominator is strictly positive); b)

larger than µθ when the argument of Φ(·) is strictly positive (that is, when Z1 < µθ), and c)

smaller than µθ when the argument of Φ(·) is strictly negative (that is, when Z1 > µθ). This

means that, when player 2 invests if and only if Z2 ≤ k2 = µθ, then player 1’s best response

is to invest if and only if Z1 ≤ µθ. This proves that there exists an equilibrium where both

players use a monotone strategy with cutoff equal to µθ for any value of (ξ1, ψ1), (ξ2, ψ2),

σS and σθ. Finally, to show that, when the condition in the statement of the proposition is

satisfied, this is the unique equilibrium of the game, we can use the same steps in the proof

of Proposition 2 to show that the best response mapping is a contraction (and that, thus, we

can apply the contraction mapping theorem). In particular, it is sufficient to show that the

derivative of the best response function of player 1 with respect to k2 and the derivative of

the best response function of player 2 with respect to k1 have both an absolute value strictly

smaller than 1.

Stage 1: Encoding Function Choice

When deriving the optimal choice of the encoding function in stage 1, we assume that, in

stage 2, players use the cutoff strategy in the (unique) equilibrium from Proposition 6.

Proposition 7 Suppose Assumptions 1, 2, 4, and µθ = (a + b)/2. The optimal encoding

function is the same for both players and is given by m⋆(θ) = ξ⋆ + ψ⋆θ = −Ωµθ
σθ

+ Ω
σθ
θ.

Proof. In stage 2, each player i = {1, 2} invests if and only if Zi ≤ µθ. Given the conditional

distribution of Zi, the probability player i invests for a given θ and encoding function is

IPi(Invest|θ, ψi) = Φ

(
µθ − θ

σS/ψi

)
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Thus, the expected utility player i gets from the game with a given value of θ is

EUi(θ, ψi) = IPi(Invest|θ, ψi) (a+ IP−i(Invest|θ, ψ−i)(b− a)) + (1− IPi(Invest|θ, ψi))θ

= θ + Φ

(
µθ − θ

σS/ψi

)(
a+ Φ

(
µθ − θ

σS/ψ−i

)
(b− a)− θ

)
where we use −i to denote i’s opponent. How does this expected utility change with ψi

(taking ψ−i as given)?

∂EUi(θ, ψi)

∂ψi
= ϕ

(
µθ − θ

σS/ψi

)(
µθ − θ

σS

)(
a+ Φ

(
µθ − θ

σS/ψ−i

)
(b− a)− θ

)
(12)

Since ϕ(·) is strictly positive for any argument, the sign of equation (12) is determined

by the product of its second and third term. First, note that the second term is a) equal

to 0 when θ = µθ, b) strictly positive when θ < µθ and c) strictly negative when θ > µθ.

Second, note that — since IP−i(Invest|θ, ψ−i) is greater than 1/2 if and only if θ < µθ and

µθ = (a+ b)/2) — the third term is a) strictly positive when θ < µθ and b) strictly negative

when θ > µθ. This means that the product of the second and third term of equation (12) is

always positive, with the exception of the case when θ = µθ, in which case it is 0.

We have shown that the expected payoff in a game with a given θ is strictly increasing

in ψi for any value of θ ̸= µθ and it is constant in ψi for θ = µθ. This means that, from an

ex-ante perspective (that is, when a player knows the distribution of θ but does not know its

actual realization), each player’s expected reward from the simultaneous move game — that

is, EUi(ψi) =
∫
EUi(θ, ψi)f(θ)dθ — is strictly increasing in ψi. Therefore, it is desirable to

make ψi as large as possible consistent with the power constraint. When the distribution of

θ is normal, we have

E[m2] = ξ2 + ψ2E[θ2] + 2ξψE[θ] = (ξ + ψµθ)
2 + ψ2σ2

θ ≤ Ω

The largest value of ψ consistent with this constraint in Assumption 2 is achieved when

ξ = −ψµθ , ψ =
Ω

σθ

Thus, m⋆(θ) = − Ω
σθ
µθ +

Ω
σθ
θ.
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B Experiment on Awareness of Cognitive Noise

Here we report results from an additional experiment that is designed to investigate whether

subjects are aware of their own imprecision and the imprecision of others. If subjects are

not aware of the cognitive noise of others, then this would shut down the channel that

generates strategic uncertainty in our model, which is key to generating the unique threshold

equilibrium.

Experimental Design

Our method for studying awareness of imprecision is to create a simplified version of the

coordination game experiment in the main text, but one that retains the core individual

decision-making prediction that subjects play a threshold strategy. We employ a task from

the numerical cognition literature where subjects are incentivized to quickly and accurately

classify whether a two-digit number is larger or smaller than the number 55. Note that this

threshold strategy is identical to the equilibrium strategy in Experiment 1; the important

difference is that here, we exogenously impose the strategy on subjects without any strategic

considerations or equilibrium requirements. We then incentivize subjects to report beliefs

about errors in their own classification and in the classification of others. These beliefs are

the main object of study in this experiment.

We recruit 300 subjects from Prolific who did not participate in Experiment 1 or Ex-

periment 2. We pay subjects 1 GBP for completing the study, in addition to earnings from

three phases of the experiment. In Phase 1, on each of 150 rounds, subjects are incentivized

to quickly and accurately classify whether a two-digit Arabic numeral on the experimen-

tal display screen is larger or smaller than 55. Subjects earn (1.5 × accuracy − 1 × speed)

GBPs, where ‘accuracy’ is the percentage of trials where the subject classifies the number

correctly, and ‘speed’ is the average response time in seconds.35 As in Experiment 1, there

are two conditions, and the only difference across conditions is the distribution from which

the two-digit Arabic numeral (which we again denote by θ) is drawn. We use the same two

distributions as in Experiment 1: in the high volatility condition, θ ∼ N (55, 400), and in the

low volatility condition, θ ∼ N (55, 20). We then round each value of θ to the nearest integer

and re-draw if the rounded integer is less than 11 or greater than 99 (again, to ensure that

each number contains exactly two digits).

We note that one difference in incentives compared to those in Experiment 1 involves

decision speed. Here, we penalize subjects for the time it takes them to respond. The

reason we impose the speed incentive comes from the well known “speed-accuracy tradeoff”

35The experimental instructions are available in Online Appendix C.
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in perceptual decision-making: one can obtain higher accuracy in classification as decision

speed slows down. Thus, in order to increase statistical power to detect how accuracy differs

for values of θ close and far from the threshold, we jointly reward speed and accuracy.

In Phase 2 of the experiment, we incentivize subjects to report beliefs about others’

performance in the task. Furthermore, we collect data on whether subjects believe that

others are more imprecise when the number on screen is closer to the reference level of 55,

compared to when the number is farther from the reference level. This feature of beliefs

is important because the equilibrium predictions from our previous experiment depend on

the noise structure in perception. In particular, recent theoretical work has shown that an

important property of the noise structure for determining equilibrium is that discriminating

between nearby states is harder than discriminating between far away states (Morris and

Yang, 2022; Hébert and Woodford, 2021). We ask subjects to consider the 149 other par-

ticipants in their experimental condition of the study, who also just completed Phase 1. We

then ask subjects the following two questions:

1. Consider only trials where the number on screen was equal to 47. In what percentage

of these trials do you think the other participants gave a correct answer, that is, they

correctly classified whether the number was smaller or larger than 55?

2. Consider only trials where the number on screen was equal to 54. In what percentage

of these trials do you think the other participants gave a correct answer, that is, they

correctly classified whether the number was smaller or larger than 55?

For each of the two questions, we pay the subject 0.5 GBP if their forecast is within

1% of the true percentage.36 Question 1 elicits beliefs about others’ imprecision when the

distance between the number is far from the threshold (47 vs. 55), whereas Question 2 elicits

beliefs about others’ imprecision when the distance is close (54 vs. 55). While we could

have asked subjects about their beliefs about others’ imprecision for a range of numbers —

rather than the single numbers 47 and 55 — this would have introduced a confound, since

the distribution of numbers is different across conditions.

In Phase 3, we ask subjects about their own performance on the number classification

task (that they completed in Phase 1). This question is not trivial because we do not provide

subjects with feedback after any round in Phase 1 (nor after the end of Phase 1). Here, we

are also interested in subjects’ awareness of their own imprecision for numbers that are close

and far from the threshold. Specifically, we ask subjects the following two questions:

36Following Hartzmark, Hirshman and Imas (2021), we choose this elicitation procedure as opposed to
a more complex mechanism such as the Binarized Scoring Rule (BSR) due to recent evidence showing that
the BSR can systematically bias truthful reporting (Danz, Vesterlund and Wilson, 2022).
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1. Consider only trials where the number on screen was between 52 and 58. In what

percentage of these trials do you think you correctly classified whether the number was

smaller or larger than 55?

2. Consider only trials where the number on screen was less than 52 or greater than 58.

In what percentage of these trials do you think you correctly classified whether the

number was smaller or larger than 55?

For each of these two questions, we again reward subjects with 0.50 GBP if they provide

an answer that is within 1% of their true accuracy. All subjects first go through Phase 1,

and the order of Phase 2 and Phase 3 is randomized across subjects. We note that one

potential concern with our design, is that when asking subjects about their performance in

Phase 1, we are testing memory, not ex-ante beliefs. This is a reasonable concern, and an

alternative is to have subjects forecast their performance before undertaking the classification

task. However, under this alternative design, subjects’ classification performance would be

endogenous to their beliefs, and would invalidate the incentive compatibility of our belief

elicitation procedure. For this reason, we opt to implement Phase 1 first for all subjects.

Experimental Results

The upper panel of Figure A1 replicates the classic result from previous experiments on num-

ber discrimination, whereby subjects exhibit errors, and these errors increase as the number

on screen approaches the threshold (Dehaene, Dupoux and Mehler, 1990). Moreover, we see

that, for numbers between 47 and 63, errors are systematically higher in the high volatil-

ity condition (Frydman and Jin, 2022). Similar patterns are reflected in the response times

shown in the lower panel of Figure A1: response times increase as the number approaches the

threshold of 55, and response times are systematically longer in the high volatility condition.

The purpose of Phase 1 is to create a dataset about performance, over which we can ask

subjects about their beliefs in Phases 2 and 3. In the left panel of Figure A2, we see that

subjects believe their behavior in the classification task exhibits imprecision (that is, beliefs

about accuracy are less than 100%). Moreover, we see that subjects are aware that mistakes

are more likely for numbers closer to the threshold (greater than 52 and less than 58) than

for numbers farther from the threshold (less than 52 or greater than 58; p < 0.001).

The results in the middle panel of Figure A2 help validate a crucial assumption in our

model. Specifically, we see that subjects are aware of other subjects’ imprecision. Moreover,

subjects believe that others are less accurate when discriminating 54 vs. 55 compared with

discriminating 47 vs. 55 (p < 0.001). When embedded in a game, these beliefs are sufficient
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Figure A1: Accuracy and Response Times in the Classification Task. Note: Upper
panel shows the proportion of rounds on which subjects correctly classify θ as greater than
or less than the reference level of 55. Lower panel shows the average response time on rounds
where subjects correctly classify θ. In both panels, the vertical bars denote two standard
errors of the mean. Standard errors are clustered by subject.

to generate strategic uncertainty: if player i believes that player j perceives θ with error,

then player i is uncertain about player j’s perception. The data in the middle panel of Figure

A2 therefore provide support for the mechanism that generates strategic uncertainty in our

model.

Finally, our data also enable us to test one other feature of beliefs about others’ impre-
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Figure A2: Beliefs about Own and Others’ Accuracy in the Classification Task.
Note: Left panel shows the average belief about own accuracy for values of θ that are far
(θ < 52 or θ > 58) and close (51 < θ < 59) to the threshold 55. Middle panel shows the
average belief about others’ accuracy for values of θ that are far (θ = 47) and close (θ = 54)
to the threshold 55. Right panel shows the average belief about others’ accuracy when
θ = 54, split by experimental condition. In all panels, vertical bars denote two standard
errors of the mean.

cision. As outlined in our pre-registration, we test whether beliefs about others’ accuracy

on rounds when θ = 54 is higher for those subjects who experience the low volatility dis-

tribution in Phase 1.37 Such a test investigates the hypothesis that subjects are aware that

others’ perception of a given number varies as a function of the experienced distribution.

Indeed, the right panel of Figure A2 shows that, for θ = 54, subjects who experience the

high volatility distribution in Phase 1 report that others make more errors, compared to

those subjects who experience the low volatility distribution in Phase 1 (p = 0.048).

37Pre-registration document is available at https://aspredicted.org/OGG_XNK.
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C Experimental Instructions

Experiment 1 (Coordination Game)

64



65



66



Experiment 2 (Human vs. Algorithm)
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Experiment 3 (Awareness of Cognitive Noise)
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D Response Times from Experiment 1

Figure A3: Average Response Time as a Function of θ. Note: Response times are
averaged across subjects and across rounds. Vertical bars denote two standard errors of the
mean. Standard errors are clustered by subject.

Here we analyze the distribution of response times in both the high volatility and low

volatility conditions from Experiment 1. The response time variable is defined at the round

level, and measures how long it takes a player to execute a decision after the game is presented

on the screen. As outlined in our pre-registration, we test two hypotheses regarding the

distribution of response times. First, response times should peak at the unique equilibrium

cutoff level of 55. Second, conditional on θ, response times should be longer in the high

volatility condition. Our hypotheses are motivated by the literature on sequential sampling

models (Ratcliff, 1978; Bogacz, Brown, Moehlis, Holmes and Cohen, 2006), which robustly

predict that response times become longer as the values of two items under comparison

become closer together. Thus, the tests we present in this section are joint tests of cognitive

noise, which predicts that subjects use a unique threshold strategy, and sequential sampling

models, which predicts how long it takes to implement the threshold strategy on each round.

In many sequential sampling models (see, e.g., Krajbich, Armel and Rangel 2010), the

agent will execute a decision as soon as a stream of incoming signals has reached a pre-defined

reliability threshold. Because signals are sampled sequentially, response times increase with
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the number of signals drawn. While the model we present in Section 3 only allows the

agent to draw a single noisy signal, Si, one could generalize the model to allow a sequence

of independent noisy signals. For every additional noisy signal that the player collects,

her posterior will become narrower, and, thus, the entire stream of signals provides more

reliable evidence about whether θ is less than 55. As signals become more informative about

whether θ is below the (equilibrium) threshold, the agent will reach the pre-defined reliability

threshold with fewer signals, and thus response times will be shorter.

In our setting, there are two particular ways in which a signal can provide more informa-

tion about whether θ is less than 55. First, recall that in our model, the mean of Si varies

monotonically with θ. Thus, Si provides cardinal information about θ, and not just ordinal

information about whether θ is below 55. It follows that as |θ − 55| increases, Si provides
a more informative signal about whether θ < 55. Second, as the precision of Si increases,

this naturally provides more information about whether θ < 55. Taken together, sequential

sampling models predict that, when a player is tasked with implementing a cutoff strategy

(which is derived as the equilibrium strategy under cognitive noise), response times should

decrease as (i) |θ − 55| increases and (ii) the precision of Si increases. We can test the first

prediction by relying on variation in θ within an experimental condition. We can test the

second prediction by relying on the variation in signal precision across conditions, which is

endogenously generated by efficient coding.

Figure A3 plots the average response time, conditional on θ, for each of the two ex-

perimental conditions. We highlight two features of the figure. First, in the high volatility

condition, the peak response time is at θ = 55; in the low volatility condition, the peak is not

far away, at θ = 54. Moreover, response times fall almost monotonically as θ moves away

from the equilibrium threshold of 55 (p = 0.001 in a mixed-effects regression of response

time on |θ − 55| for each of the two conditions). Second, there is a clear separation of the

curves across conditions: conditional on θ, response times are longer in the high volatility

condition compared to the low volatility condition (unconditionally, the average response

time is significantly longer in the high volatility condition, p < 0.001). These two features

of the data are roughly consistent with the predictions outlined above.

One caveat to this analysis is that the player chooses the precision of Si according to

efficient coding, but under the assumption that she can only draw one signal. Predictions

may change if we endogenized the signal precision and the number of signals to be drawn (or

the reliability threshold). That said, the data from Figure A3 provide suggestive evidence

that subjects are implementing threshold strategies in a manner that is consistent with core

predictions of sequential sampling models. Thus, the response time data help validate our

assumptions about the cognitive constraints that subjects face when playing the game.
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E Heterogeneity in Experiment 2

Figure A4: Heterogeneity in % Correct Decisions in Experiment 2. Note: Each
point represents a single subject from the Algorithm condition. A “near to threshold round”
is one where θ takes on one of the following values: 51, 52, 53, 54, 56, 57, 58, or 59. A “far
from threshold round” is one where θ takes on one of the following values: 47, 48, 49, 50,
60, 61, 62, or 63.

Figure 5 in the main text shows that, on average, subjects in the Algorithm condition

from Experiment 2 exhibit noise in their behavior. However, Figure 5 only shows the data

at the aggregate level. Here, we investigate individual-level data. We demonstrate that a

majority of subjects exhibit noise in their behavior, and that the noise structure is consistent

with our model assumptions.

For each of the 100 subjects in the Algorithm condition, we compute the proportion

of decisions that are “correct” in the sense that subjects best respond to the computer’s

exogenous strategy. In particular, we define a decision as “correct” if the subject (chooses

not invest and θ < 55) or (chooses invest and θ > 55). Otherwise, we define a decision as

“incorrect”. We analyze the sample used to create Figure 5: all rounds for which 46 < θ < 64

and subjects exhibit a response time greater than 0.5 seconds.

Before presenting the results, note that our model of cognitive noise induces incorrect

decisions because the subject does not observe θ, and instead only observes Si = θ + σεi.
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Thus, even if a subject perfectly follows the optimal threshold strategy of choosing invest

if and only if Si < 55, there may still be “incorrect” decisions, and the frequency of these

incorrect decisions is increasing in σ.

Figure A4 shows that nearly all subjects (91%) exhibit incorrect decisions, consistent with

them using a noisy signal to implement a threshold strategy. We also note that a majority

of subjects (78%) are located above the 45-degree line, indicating that the frequency of

incorrect decisions is higher when θ is near the threshold of 55, compared to when it is far

from the threshold of 55. Taken together, these results are consistent with: 1) subjects

exhibiting noise at the indiviudal level and 2) our assumption of the noise specification,

whereby incorrect decisions become more likely as θ approaches the threshold of 55.
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