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Abstract

A principal wishes to promote an agent only if the state is good, and gradually
receives private information about the state. The agent wants promotion but would
rather leave than stay and fail promotion. The principal induces the agent to stay
by committing today to tell the agent tomorrow about his chances of promotion
the day after. The principal promotes the agent with some probability even after
realizing early that the state is bad. The principal may commit not to lead the
agent on. Our results apply to worker retention, relationship-specific investment,
and forward guidance.
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1 Introduction

Consider a principal who will take action A or B two days from now. The principal could
commit today to take action A. Alternatively, she could commit today that tomorrow,
she will either commit to take action A the day after, or commit to take action B the day
after; that is, she could commit to commit.

The U.S. Air Force provides a recent example. Because it faces stiff competition
for its pilots from civilian airlines,1 the Air Force has historically provided discretionary
rewards – such as choice of assignment location or bonus pay – to pilots who stayed
beyond their 10-year service requirement. However, this has not been very effective in
retaining pilots because the Air Force did not tell a pilot until he reached the end of the
10-year requirement what, if any, rewards he would receive, whereas many pilots would
decide a few years in advance that they would leave once they finished their requirement.2

Realizing this, the Air Force announced in 2023 that, when a pilot has one to three years
left in his service requirement, the Air Force will either commit to provide rewards or
commit not to provide them. That is, the Air Force made a commitment about future
commitments.3

Such higher-order commitments occur in many contexts. A firm may commit today to
update a worker next year about his chance of promotion the year after. A regulator who
wishes to provide forward guidance may commit to announce next month the amount
of subsidy that she will provide to an industry next year. Alice may say to Bob on
Wednesday, “I’m not sure if I can have dinner with you on Friday, but I’ll tell you
tomorrow.” While commitments about future commitments are prevalent, little is known
on why such commitments are made or how one should make them. In this paper, we
argue that when a principal receives private information over time, committing to commit
is an effective way for the principal to convince an agent to wait for the principal’s
decision. We characterize how a principal should optimally commit to commit, and we
show that when it is difficult to convince the agent to wait, the principal should commit
to sometimes do what the agent prefers regardless of what information the principal may
receive in the future.

We consider a parsimonious principal-agent model with three periods and a binary
1In 2022, major U.S. airlines hired 25% – or 3,280 – of their new pilots from the military, contributing

to the long-standing shortage of Air Force pilots. Training one fighter pilot can cost more than 10 million
dollars (Mattock et al., 2019).

2See General David Allvin’s testimony to Senate Committee on Armed Services, Subcommittee on
Readiness and Management Support (https://www.armed-services.senate.gov/hearings/to-rec
eive-testimony-on-the-current-readiness-of-the-joint-force). Relevant testimony starts at
01:06:19.

3See James M. Inhofe National Defense Authorization Act for Fiscal Year 2023, Section 604 (https:
//www.congress.gov/bill/117th-congress/house-bill/7776/text).

2

https://www.armed-services.senate.gov/hearings/to-receive-testimony-on-the-current-readiness-of-the-joint-force
https://www.armed-services.senate.gov/hearings/to-receive-testimony-on-the-current-readiness-of-the-joint-force
https://www.congress.gov/bill/117th-congress/house-bill/7776/text
https://www.congress.gov/bill/117th-congress/house-bill/7776/text


state. In periods 0 and 1, the agent decides whether to stay and continue interacting with
the principal or to leave and take his outside option, which decreases every period. If
the agent stays until period 2, the principal chooses whether to promote the agent. The
agent values being promoted and does not care about the state, whereas the principal’s
payoff from promotion is positive in the good state and negative in the bad state. The
state is initially unknown to both parties, and the principal privately updates her belief
about the state over time. In period 1, she observes a signal that is correlated with the
state; in period 2, she observes the state.

A mechanism takes as input the principal’s report of her updated belief about the
state in period 1 and period 2. In period 1, the mechanism outputs a recommendation
to the agent, informing him about the likelihood of being promoted. In period 2, the
mechanism decides whether the agent will be promoted. We interpret the mechanism as
the principal’s commitment to the agent, which constrains the principal’s future commu-
nication and action but grants her some flexibility to respond to future information. Our
goal is to find a mechanism that maximizes the principal’s ex ante payoff, subject to the
constraints that the agent stays in period 0 and obeys the mechanism’s recommendation
in period 1, and that the principal reports truthfully in periods 1 and 2.

Ideally, the principal would wait until period 2 and then promote the agent if and
only if the state is good, but because waiting is costly for the agent, the principal must
convince the agent to stay while the principal receives information. A simple way to do
so is to commit to wait until period 2 and then promote the agent with a high enough
probability even if the state is bad. However, we argue that the principal can convince
more efficiently by committing to commit, that is, by committing in period 0 to the ways
in which, in period 1, the principal can restrict her promotion decision and communicate
this restriction to the agent.

To understand why, we first assume that the principal’s information is contractible,
which allows us to ignore the principal’s incentive compatibility constraints. This de-
scribes environments in which the principal’s information can be verified ex post, or
environments with many heterogeneous agents. In this case, the principal’s ex ante pay-
off is maximized by the following contractible-optimal mechanism. In period 1, if the
posterior probability that the state is good conditional on the principal’s signal is below
a threshold, the mechanism informs the agent that he will fail promotion regardless of
the realized state, and he leaves. If the conditional probability is above the threshold,
the mechanism asks the agent to stay, promising to promote him in the good state and
possibly also promising to promote him with positive probability in the bad state. Thus
the contractible-optimal mechanism is parametrized by the period-1 threshold belief and
the period-2 promotion probability in the bad state, which can vary independently of each

3



other. We interpret this mechanism as a commitment about future commitments; the
principal commits in period 0 that, in period 1, she will either commit not to promote the
agent or commit to promote her with at least some probability. The agent stays in period
0 in anticipation of the update that the principal will provide in period 1. In period 1, if
the principal says that he will not be promoted, he can then leave; otherwise, he learns
that he is relatively likely to be promoted, and will stay. By sometimes committing in
period 1 not to promote the agent, the mechanism reduces the agent’s ex ante cost of
staying in period 0.

Unfortunately, if the principal’s information cannot be contracted on, the contractible-
optimal mechanism is not incentive compatible for the principal. For example, suppose
the mechanism never promotes the agent when the state turns out to be bad (which is
the case when the agent’s period-0 outside option is not too attractive). In period 1, no
matter how pessimistic the principal is about the state, as long as there is the smallest
possibility that the state may turn out to be good, the principal always prefers that the
agent stays until period 2, as promotion only happens in the good state. Thus in period
1, even if the principal’s belief that the state is good is below the threshold, she will prefer
to report to the mechanism that her belief is above the threshold. Similar arguments can
be used to show that the contractible-optimal mechanism is never incentive compatible
except in a knife-edge case.

We thus study the optimal mechanism, which maximizes the principal’s ex ante payoff
while incentivizing the agent to stay and incentivizing the principal to report truthfully.
We show that there always exists an optimal mechanism that can be written as a convex
combination of a constant mechanism, which always promotes the agent regardless of the
principal’s beliefs, and three single-threshold mechanisms. Similarly to the contractible-
optimal mechanism, a threshold mechanism is a commitment about commitments; it
never promotes the agent if the principal reports that her posterior belief is below a
threshold, and if the report is above the threshold, the agent is always promoted in the
good state and promoted with a positive probability in the bad state. Unlike in the
contractible-optimal mechanism, however, the threshold belief pins down the probability
of promotion in the bad state through the principal’s truth-telling incentives. In a thresh-
old mechanism, the two parameters of the contractible-optimal mechanism are coupled
into one.

The optimal mechanism always places a positive weight on at least one threshold
mechanism. Because the principal’s incentive compatibility constraints make it difficult
for a threshold mechanism to provide a high ex ante payoff to the agent, when the value
of the agent’s initial outside option is high, the optimal mechanism must also place a
positive weight on the constant mechanism that always promotes the agent, ignoring the
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principal’s information. As a result, even when the principal knows for sure in period 1
that the state will be bad, the mechanism sometimes asks the agent to stay in period 1,
and then promotes the agent with certainty in period 2. In the same optimal mechanism,
if the principal has a more optimistic belief about the state in period 1, the mechanism
may ask the agent to stay in period 1, but then sometimes refuse to promote him in period
2 if the bad state is realized. Therefore, conditional on having obeyed the recommendation
to stay in period 1, the agent may be less likely to be promoted in period 2 when the
principal in period 1 believed that the state was more likely to be good. Not only does
the principal’s past belief – which is payoff-irrelevant once the state is realized – affect
the probability of promotion, but an optimistic belief makes promotion less likely.

This seemingly unnatural feature of the optimal mechanism might lead one to won-
der how it could be implemented in real life. Here, the decomposition of the optimal
mechanism provides an insight. A firm designing promotion rules can implement thresh-
old mechanisms by committing to conduct a midterm and a final review of the worker’s
value to the firm. A mixture of threshold mechanisms and the mechanism that always
promotes the agent can be implemented by reviewing the worker’s value only a fraction
of the time and otherwise promoting him by default. When a worker who faces such a
randomized mechanism fails promotion in period 2, he may complain that the firm led
him on by asking him to stay even though it knew he was unlikely to be promoted. We
provide a sufficient condition for the worker’s obedience to be robust to additional infor-
mation. Under this condition, the worker’s complaint is unwarranted because he would
have chosen to stay even if he had known everything that the firm had known when he
was recommended to stay.

The methodological contribution of this paper is to introduce a portable approach for
studying mechanism design without transfers. By observing that the principal trades off
the probability of promotion in the good state against the probability of promotion in
the bad state, we show that the former pins down the latter via the envelope theorem. A
caveat is that period-2 incentive compatibility, as well as the restriction that a probability
cannot be greater than 1, imposes additional (infinite-dimensional) constraints on the
probability of promotion in the bad state; we show that these constraints reduce to
one additional linear inequality constraint. By Winkler (1988) and Bauer’s maximum
principle, the constraint adds an extra jump to the optimal allocation. Subsequent work
has drawn upon the approach in this paper to analyze different economic problems.4

4For example, Dasgupta (2023) uses my approach to study the optimal design of knowledge-screening
tests.
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Related Literature We consider an important yet understudied question of how a
principal should optimally commit to provide information about her future action. Our
model combines dynamic mechanism design and dynamic information design, and our
mechanism is an instance of the communication mechanism for multistage games intro-
duced by Myerson (1986), whose revelation principle we appeal to. As in dynamic mech-
anism design, such as sequential screening (Baron and Besanko, 1984; Courty and Hao,
2000; Krähmer and Strausz, 2015) and rules versus discretion (Kydland and Prescott,
1977; Barro and Gordon, 1983; Athey et al., 2005; Halac and Yared, 2014, 2022), our
mechanism makes an allocation decision (promotion of the agent) based on private infor-
mation which is elicited from a player (the principal) over time.5 In dynamic mechanism
design, the principal typically does not need to communicate to the agent, since the
agent does not take different actions in equilibrium. For example, in standard sequen-
tial screening models, the buyer may be allowed to walk away from the monopolist at
some point during the game. However, because the buyer’s outside option stays constant
throughout his interaction with the monopolist, it is without loss to impose interim or ex
post participation constraints and consider mechanisms in which the buyer always stays
until the end of the game. Thus there is no reason for the monopolist to provide any
information to the buyer. In contrast, in our model, the agent sometimes leaves in period
1, and the principal commits in period 0 to inform the agent in period 1 about whether
he should stay or leave. This promise of future communication plays a crucial role in
incentivizing the agent to stay in period 0.

Following the growth of the literature on information design (Kamenica and Gentzkow,
2011; Bergemann and Morris, 2013), there have been a series of papers that study how a
principal commits to provide over time information about the state of the world, chosen
exogenously by nature (Ely, 2017; Renault et al., 2017; Ely and Szydlowski, 2020; Orlov
et al., 2020; Smolin, 2021; Bizzotto et al., 2021; Ball, 2022). In contrast, the principal in
our model commits to provide information over time about her own future decision. One
might think of our principal as solving an information design problem where the state of
the world that the agent cares about is chosen by the principal.6

To solve for the optimal mechanism, we apply Proposition 2.1. of Winkler (1988). In
our context, the proposition characterizes the extreme points of the feasible set of direct
mechanisms. To apply Winkler’s result, one must be able to write the problem as a linear

5In particular, rules versus discretion studies how a principal who expects to receive private infor-
mation in the future optimally restricts her future decision. For example, Athey et al. (2005) considers
an infinite repetition of two-period interactions between a principal and a continuum of agents in the
context of monetary policy and shows that the optimal mechanism is a static upper bound on policy.

6A literature on the design of feedback in dynamic contests (Lizzeri et al., 2005; Yildirim, 2005; Ely
et al., 2023) studies how providing interim feedback about performance can affect agents’ choice of effort.
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program with a finite number of moment constraints.7 Although our problem initially
involves infinitely many constraints, we show how these can be reduced to a finite number
of constraints. Our model does not have transfers, but by observing that the principal
can trade off the probability of promotion in the good state against the probability of
promotion in the bad state, we are able to appeal to the envelope theorem approach
used in standard screening problems (Riley and Zeckhauser, 1983; Myerson, 1981; Mussa
and Rosen, 1978). Our principal reports her private information to the mechanism, as
happens under an inscrutable mechanism in the informed principal problem (Myerson,
1983). The difference is that our mechanism is chosen before the principal receives private
information with the goal of maximizing the principal’s ex ante expected payoff.

The interpretation of our results speaks to the literature on worker retention. A
firm benefits from retaining its workers because the workers possess, and choose how
much to invest in, firm-specific human capital (Oi, 1962; Becker, 2009; Mortensen, 1978;
Hashimoto and Yu, 1980; Hashimoto, 1981). We complement this literature by asking
how a firm can optimally retain its worker via the prospect of promotion. Our results
are also related to the literature on investment under uncertainty (Bernanke, 1983; Dixit
et al., 1994). It has been argued that uncertainty of government policy can hinder firms’
investment (Rodrik, 1991; Gulen and Ion, 2016). We show how a regulator can optimally
incentivize investment by committing to reduce policy uncertainty over time.

2 Model

A principal (she) and an agent (he) interact over three periods. There is a state θ ∈
{−1, 1}. The players share a common prior belief that the state is good (θ = 1) with
probability µ0 ∈ (0, 1) and bad (θ = −1) with probability 1 − µ0.

Period 0 (Ex Ante) The agent chooses whether to participate in the interaction. If
he chooses not to participate, the game ends, the principal receives a payoff of 0, and the
agent receives his ex ante outside option that gives him a payoff of c0 > 0. If the agent
participates, the game proceeds to period 1.

Period 1 (Interim) First, the principal privately updates her belief that the state is
good to µ ∈ [0, 1]. We assume that µ is drawn according to a distribution F ∈ ∆[0, 1]
that has a density f and satisfies EF [µ] = µ0. We assume f > 0 and limµ→1 f(µ) > 0.

7For example, Winkler’s result does not apply to the setting of Kleiner et al. (2021) because there are
uncountably many majorization constraints.
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The belief distribution F is commonly known to both the principal and the agent in
period 0, but only the principal observes the realized µ.8

The principal then sends to the agent an arbitrary message, which may contain in-
formation about the principal’s updated belief. Having observed the principal’s message,
the agent chooses whether to stay or leave. Let A = {stay, leave} be the action space of
the agent in period 1. If the agent leaves, the game ends, the principal receives 0, and
the agent receives his interim outside option c1 ∈ (0, c0). If the agent stays, the game
proceeds to period 2.

Period 2 (Ex post) First, the principal privately observes the state θ. Then, the prin-
cipal decides whether to promote the agent. If the agent is promoted, the agent receives
b > c0 and the principal receives θ. If the agent is not promoted, both players receive 0.
We assume that the agent’s ex ante outside option is high enough that incentivizing the
agent is nontrivial for the principal, i.e. c0 > bµ0.9

Mechanism We appeal to the revelation principal (Myerson, 1986) and restrict atten-
tion to direct mechanisms, which is a pair of functions σ = (σ1, σ2). In period 1, the
principal reports her belief to the mechanism. Given a report µ̂, with probability σ1(µ̂),
the mechanism asks the agent to stay. With probability 1 − σ1(µ̂), the agent is asked
to leave. In period 2, the principal reports the state to the mechanism. The mechanism
promotes the agent with probability σ2(µ̂, ã, θ̂) if the period-1 report was µ̂, the period-1
recommendation was ã, the agent stayed in period 1, and the period-2 report is θ̂.10

Optimal Mechanism The principal’s expected payoff from a mechanism σ is
∫ 1

0
σ1(µ)(µσ2(µ, stay, 1) − (1 − µ)σ2(µ, stay, −1)) dF (µ) . (1)

Our goal is to find a mechanism σ that maximizes the principal’s expected payoff subject
to the constraints that the agent participates and obeys recommendations and that the
principal reports truthfully to the mechanism. Notice that, on path, the game never

8The distribution F can be generated by a signal π : {−1, 1} → ∆[0, 1] defined by

f(s) = µ0π(s|1) + (1 − µ0)π(s| − 1), ∀s ∈ [0, 1]
(1 − s)µ0π(s|1) = s(1 − µ0)π(s| − 1) ∀s ∈ [0, 1].

9Otherwise, the agent participates in period 0 and stays in period 1 even if the principal does not
send any meaningful messages in period 1 and promotes the agent in period 2 if and only if θ = 1.

10Formally, a mechanism is a pair of Borel-measurable functions σ1 : [0, 1] → [0, 1] and σ2 : [0, 1] × A ×
{−1, 1} → [0, 1].
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proceeds to period 2 if the agent is asked to leave in period 1. Moreover, if the mechanism
never promotes the agent in period 2 whenever the agent disobeyed the recommendation
to leave in period 1, the agent will always obey the recommendation to leave in period 1.
Thus it is without loss of generality to set σ2(µ, leave, θ) = 0 for all µ and θ and trivially
satisfy the agent’s obedience constraint after being asked to leave in period 1. To simplify
notation, we write σ2(µ, θ) := σ2(µ, stay, θ).

The agent’s obedience constraint after being recommended to stay in period 1 is

c1 ≤ b

∫ 1
0 σ1(µ)(µσ2(µ, 1) + (1 − µ)σ2(µ, −1))dF (µ)∫ 1

0 σ1(µ)dF (µ)
, (2)

where the fraction on the right-hand side is the expected probability of being promoted
conditional on obeying the recommendation to stay. The agent’s ex ante individual
rationality constraint is

c0 ≤ b
∫ 1

0
σ1(µ)(µσ2(µ, 1) + (1 − µ)σ2(µ, −1)) dF (µ) + c1

∫ 1

0
(1 − σ1(µ)) dF (µ) , (A-IR)

where the first integral on the right-hand side is the ex ante probability of being promoted,
and the second integral is the ex ante probability of leaving at the interim stage. It is
easy to see that obedience after being asked to stay is implied by individual rationality.
Intuitively, in period 0, the agent knows he will obey if recommended to leave. If he
is going to disobey when asked to stay, then he will always receive a payoff of c1 from
participating in the mechanism. However, by not participating in the first place, he
receives c0 > c1. We can thus ignore the agent’s obedience constraints.

In period t = 2, the principal observes θ and reports θ̂. Given that her period-
1 report was µ, her expected payoff is θσ2(µ, θ̂). If θ = 1, incentive compatibility is
equivalent to σ2(µ, 1) ≥ σ2(µ, −1). If θ = −1, incentive compatibility is equivalent
to −σ2(µ, −1) ≥ −σ2(µ, 1), which is again equivalent to σ2(µ, 1) ≥ σ2(µ, −1). Thus
incentive compatibility in period 2 is given by

σ2(µ, 1) ≥ σ2(µ, −1), ∀µ ∈ [0, 1]. (P-IC2)

This means that reporting the good state should always lead to a higher probability
of promotion than reporting the bad state. Note that (P-IC2) also rules out double
deviations. Even if the principal falsely reports µ̂ ̸= µ in period 1, as long as (P-IC2)
holds, it is optimal for the principal to be truthful in t = 2. Hence the only remaining
deviation for the principal is to misreport her belief in period 1 and then report the
state truthfully in period 2. Such deviations are ruled out by the incentive compatibility
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constraints in period 1:

σ1(µ)(µσ2(µ, 1) − (1 − µ)σ2(µ, −1)) ≥ σ1(µ̂)(µσ2(µ̂, 1) − (1 − µ)σ2(µ̂, −1)) ∀µ, µ̂ ∈ [0, 1].
(P-IC1)

A mechanism σ is optimal if it solves

max
σ1,σ2

∫ 1

0
σ1(µ)(µσ2(µ, 1) − (1 − µ)σ2(µ, −1)) dF (µ)

s.t. A-IR, P-IC1, P-IC2 .

Note that the principal’s ex ante payoff from the optimal mechanism may be negative, in
which case she will prefer to obtain a payoff of 0 by not inducing the agent to participate
in the first place. Since it is straightforward to check whether the principal’s ex ante
payoff is positive, we restrict attention to mechanisms that satisfy A-IR.

Interpretation of the Model The leading interpretation of our model throughout the
paper is that the principal is a firm who tries to retain the agent, who is the worker; see
Section 7 for alternative interpretations. The state θ ∈ {−1, 1} represents the firm’s value
for the worker. We assume that the firm, but not the worker, updates information about
the worker’s value. This would be the case if the worker’s value depends on the demand
for the firm’s goods, which only the firm observes. Even if productivity is determined
by the worker’s innate ability, it may be that, by observing the worker, the firm acquires
information about the worker’s ability that the worker himself is unaware of. The firm’s
belief about the worker’s value cannot be contracted on because it is subjective and not
verifiable in a court of law. The firm does not receive any flow payoffs from employing
the worker in periods 0 or 1. This would be the case, for example, if the worker is paid
his marginal product until he is promoted.11 The worker obtains a payoff of b from being
promoted but has two outside offers. The first outside offer gives the worker a payoff of c0

and disappears after period 0. The second outside offer is worth c1 and disappears after
period 1. The mechanism can be interpreted as a human resources (HR) policy which
governs how the firm may communicate to or promote the worker.

Our assumption that utility is not transferable is adequate for studying environments
where an employee’s compensation is determined by their position, as is often the case
in bureaucratic organizations. For example, the majority of civilian white-collar federal

11Alternatively, the worker may be a contractor who may or may not be hired for a project that starts
in period 2. In each of periods 0 and 1, the contractor either waits for the possibility of being hired by
the firm or leaves and commits himself to an alternative project that precludes him from working for the
firm.
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employees in the United States are paid according to the General Schedule, which de-
termines the salary for employees in each grade and is set by Congress. The director of
a government agency can decide who to employ and which grade its employees belong
to, but cannot change the salary for each grade or introduce arbitrary bonus schemes.
Similarly, although a manager may have the discretion to promote a worker, the wage for
each position may be determined at the corporate level, or it may be regulated by laws
that mandate equal pay for equal work.

3 Contractible Signals

3.1 Characterization

Let us first consider the mechanism that maximizes the principal’s ex ante payoff subject
only to the agent’s individual rationality constraint, while ignoring the principal’s incen-
tive compatibility constraints. We call this the contractible-optimal mechanism, since this
mechanism would be optimal for the principal if her signals were contractible, so that the
mechanism could depend directly on the true signals rather than the principal’s reports
about the signals. This may be the case if, for instance, the firm’s signals come from for-
mal evaluations (of the worker or the firm), the result of which can be publicly verified ex
post. As we discuss in Appendix B.2.2, the principal can also implement the contractible-
optimal mechanism if there is a continuum of agents with ex post heterogeneous states,
and the principal can commit to marginal distributions.

A contractible-optimal mechanism σ solves

max
σ1,σ2

∫ 1

0
σ1(µ)(µσ2(µ, 1) − (1 − µ)σ2(µ, −1)) dF (µ)

s.t. c0 ≤ b
∫ 1

0
σ1(µ)(µσ2(µ, 1) + (1 − µ)σ2(µ, −1)) dF (µ) + c1

∫ 1

0
(1 − σ1(µ)) dF (µ)

(A-IR)

Notice that, if σ2(µ, 1) < 1, increasing σ2(µ, 1) increases the objective and relaxes A-
IR. This is intuitive because when the state is good, both the principal and the agent
prefer promotion. Thus we must have σ2(µ, 1) = 1, and finding a contractible-optimal
mechanism means choosing σ1(µ) and σ2(µ, −1) to solve

max
σ1(·), σ2(·,−1)

∫ 1

0
σ1(µ)(µ − (1 − µ)σ2(µ, −1)) dF (µ)

s.t. c0 ≤ b
∫ 1

0
σ1(µ)(µ + (1 − µ)σ2(µ, −1)) dF (µ) + c1

∫ 1

0
(1 − σ1(µ)) dF (µ) . (A-IR)
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The following lemma simplifies the problem.

Lemma 1 (Memoryless Promotion). When the principal’s signals are contractible, it is
without loss to restrict attention to σ = (σ1, σ2) such that σ2(µ, −1) is constant in µ.

Proof. Take any mechanism σ. By the intermediate value theorem, there exists q ∈ [0, 1]
such that

∫ 1

0
(1 − µ)σ1(µ)σ2(µ, −1)dF (µ) = q

∫ 1

0
(1 − µ)σ1(µ)dF (µ).

Let σ′
2(µ, −1) := q for all µ ∈ [0, 1]. Clearly, both the objective and the right-hand side

of A-IR take the same values under mechanisms (σ1, σ2) and (σ1, σ′
2).

Lemma 1 holds because a joint distribution of states and promotion decisions (but not
interim beliefs) pins down the principal’s and the agent’s ex ante payoffs. The lemma fails
when signals are not contractible, since the principal’s interim payoffs, which appear in the
principal’s incentive compatibility constraints, do depend on her interim beliefs. Indeed,
we will see in Sections 4 and 5 that in the optimal mechanism under non-contractible
signals, the probability of promotion in period 2 in a given state may depend non-trivially
on the principal’s period-1 belief report, even after conditioning on the period-1 recom-
mendation to the agent. In such mechanisms, in period 2, the principal knows more than
the agent about the promotion probability in each state. Lemma 1 shows that such in-
formational asymmetry is unnecessary if the principal’s signals are contractible. Since σ2

does not depend on the principal’s belief conditional on recommendations, upon receiving
the recommendation in period 1, the agent knows the exact probability of promotion that
he will face in each state if he decides to stay.12

By Lemma 1, it is enough to choose σ1(µ) and a constant qE ∈ [0, 1], the probability
of promoting the agent in the bad state, to solve

max
σ1,qE

∫ 1

0
σ1(µ)(µ − (1 − µ)qE) dF (µ)

s.t. c0 ≤ b
∫ 1

0
σ1(µ)(µ + (1 − µ)qE) dF (µ) + c1

∫ 1

0
(1 − σ1(µ)) dF (µ) . (A-IR)

12Because the principal knows the state, it is always the case that the principal knows more than the
agent about the promotion probability unconditional on the state. On the other hand, the agent does not
know more than the principal, since although the principal does not observe the mechanism’s period-1
recommendation to the agent, once period 2 ensues, the principal knows in equilibrium that the agent
was asked to stay and obeyed.
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Let us define

ĉ := b
∫ 1

c1/2b
µdF (µ) + c1F (c1/2b) (3)

č := b (1 − F (c1/2b)) + c1F (c1/2b).

ĉ is the ex ante payoff of the agent if he stays in period 1 if and only if the principal’s
belief is above c1/2b and is promoted in period 2 if and only if the state is good. č is the
ex ante payoff of the agent if he stays in period 1 if and only if the principal’s belief is
above c1/2b and is always promoted in period 2. Clearly, we have bµ0 < ĉ < č < b. The
following proposition characterizes the contractible-optimal mechanism.

Proposition 1 (Contractible-Optimal Mechanism). Fix b, c1 ∈ R+ and F ∈ ∆[0, 1]. The
following are true:

(i) Suppose c0 ∈ (bµ0, ĉ). Then, there exists a mechanism (qE, µE) with qE = 0 and
µE ∈ (0, c1/2b) that is contractible-optimal. µE is unique and strictly and continu-
ously increasing in c0.

(ii) Suppose c0 ∈ [ĉ, č]. Then, there exists a mechanism (qE, µE) with qE > 0 and
µE = c1/2b that is contractible-optimal. qE is unique and strictly and continuously
increasing in c0.

(iii) If c0 ∈ (č, b), then there exists a mechanism (qE, µE) with qE = 1 and µE ∈ (0, c1/2b)
that is contractible-optimal. µE is unique and strictly and continuously decreasing
in c0.

Proof. See Appendix A.1.

Figure 1 depicts the contractible-optimal mechanism for different values of the agent’s
ex ante outside option c0. Note that we have drawn σ2(µ, −1) only for the values of µ

such that σ1(µ) > 0, as σ2(µ, −1) is irrelevant if σ1(µ) = 0.
Proposition 1 describes how the contractible-optimal mechanism changes as we in-

crease c0, starting from bµ0. First, the threshold belief µE increases up to c1/2b (case
(i)), then qE increases from 0 to 1 (case (ii)), and finally, µE decreases back to 0 (case
(iii)). In case (i), raising µE benefits the agent because as long as qE = 0 and µ ≤ c1/b,
the agent would prefer to leave in period zero rather than wait until period one. A higher
µE hurts the principal because she would rather have the agent stay, given that she pro-
motes him in period 2 if and only if the state is good. In case (iii), lowering µE benefits
the agent because he will be promoted whenever he obeys the recommendation to stay. A
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Figure 1: Contractible-Optimal Mechanism

lower µE hurts the principal because µE ≤ c1/2b implies that the principal with a belief
µ ≤ µE would rather have the agent leave than promote him for sure.

A naive principal may have considered a mechanism that does not communicate to
the agent at the interim stage (or, equivalently, always asks him to stay) and makes the
promotion decision after the state is realized – for example, always promoting if θ = 1,
and promoting with some probability if θ = −1. Proposition 1 says that the principal can
do better by using her interim information.13 In particular, the optimal way to exploit
the interim information is to ask the agent to leave when the principal’s interim belief is
low. This reduces the agent’s ex ante opportunity cost of participating in the mechanism
because he is able to leave in period 1 and obtain c1 when the state is unlikely to be
good. The principal and the agent would forgo the potential benefit from promotion in
the good state, but this is not too costly ex ante because the agent leaves only when the
interim belief is low.

We interpret a mechanism that features interim communication as a commitment
about future commitments. For example, in panel (ii) of Figure 1, the “stay” recommen-
dation can be seen as a commitment to promote with a probability of at least qE, and
the “leave” recommendation is a commitment not to promote. In period 0, the principal
commits to choose one out of these two commitments in period 1.

3.2 Violation of Principal’s Incentive Compatibility

When signals are not contractible, the contractible-optimal mechanism characterized by
Proposition 1 is almost never incentive compatible for the principal. In case (i), if the
principal’s interim belief µ is below the threshold µE, reporting her belief truthfully gives
her an interim payoff of 0. However, she can obtain a strictly positive interim payoff by

13Any mechanism that ignores information in period 1 must have µE = 0. Proposition 1 shows that
such a mechanism can never be contractible-optimal.
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misreporting that her belief is above µE, inducing the agent to stay, and then reporting
truthfully in period 2. In case (iii), when the principal’s belief is µ ∈ (µE, 1/2), it is
profitable for her to report µ < µE. Similarly, in case (ii), the principal can always
profitably misreport her belief except in the knife-edge case where qE = µE/(1 − µE).14

In order to incentivize the principal to report her beliefs truthfully, a mechanism must
distort the recommendation and promotion decisions away from the contractible-optimal
mechanism. The next two sections explore how to optimally introduce such distortions.

4 Optimal Mechanism

4.1 Simplifying the Problem

Recall from Section 2 that an optimal mechanism solves

max
σ1,σ2

∫ 1

0
σ1(µ)(µσ2(µ, 1) − (1 − µ)σ2(µ, −1)) dF (µ)

s.t. A-IR, P-IC1, P-IC2 .

To make the problem linear in the mechanism, we introduce the following change of
variables: σ+(µ) := σ1(µ)σ2(µ, 1) and σ−(µ) := σ1(µ)σ2(µ, −1). In words, σ+(µ) is the
equilibrium ex ante probability that the agent will be promoted when the principal reports
µ and 1. σ−(µ) is the equilibrium ex ante probability that the agent will be promoted
when the principal reports µ and −1. We thus choose three functions, σ1, σ+, and σ−,
each mapping [0, 1] into [0, 1], to solve

max
σ1, σ+, σ−

∫ 1

0
(µσ+(µ) − (1 − µ)σ−(µ)) dF (µ)

s.t. c0 ≤ b
∫ 1

0
(µσ+(µ) + (1 − µ)σ−(µ)) dF (µ) + c1

∫ 1

0
(1 − σ1(µ)) dF (µ) (A-IR)

µσ+(µ) − (1 − µ)σ−(µ) ≥ µσ+(µ′) − (1 − µ)σ−(µ′) ∀µ, µ′ ∈ [0, 1] (P-IC1)

σ+(µ) ≥ σ−(µ) ∀µ ∈ [0, 1] (P-IC2)

σ1(µ) ≥ max{σ+(µ), σ−(µ)} ∀µ ∈ [0, 1]. (F)

The feasibility constraint (F) ensures that (σ1, σ+, σ−) corresponds to a mechanism
(σ1, σ2) with σ2 ≤ 1.15

14The value of c0 such that this is true will be defined as c̃ when we describe the optimal mechanism
in Proposition 3.

15An astute reader might observe that we are no longer requiring σ2(µ, 1) ≥ σ2(µ, −1) when σ1(µ) = 0.
This is without loss since the conditional probabilities σ2(µ, 1) and σ2(µ, −1) do not matter if the
mechanism never recommends “stay” given belief µ.
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Lemma 2. It is without loss of optimality to set σ1(µ) = σ+(µ), that is, σ2(µ, 1) = 1.

Proof. Consider the following perturbation: whenever σ1(µ) > σ+(µ), we hold σ+(µ) and
σ−(µ) fixed and reduce σ1(µ) to σ+(µ). This relaxes the A-IR constraint, does not violate
the other constraints, and does not affect the objective function.16

Lemma 2 implies that if the agent obeyed the recommendation to stay in period 1,
and the good state is realized in period 2, the mechanism should promote the agent with
probability 1 regardless of µ. Intuitively, if the mechanism sometimes recommends “stay”
but does not always promote the agent even in the good state, it would be more efficient
to have the agent leave more often in period 1.

Our goal now is to find σ+(µ) and σ−(µ) that solve the following maximization prob-
lem, which we denote (P).

max
σ+,σ−

∫ 1

0
(µσ+(µ) − (1 − µ)σ−(µ)) dF (µ)

s.t. c0 ≤ b
∫ 1

0
(µσ+(µ) + (1 − µ)σ−(µ)) dF (µ) + c1

∫ 1

0
(1 − σ+(µ)) dF (µ) (A-IR)

µσ+(µ) − (1 − µ)σ−(µ) ≥ µσ+(µ′) − (1 − µ)σ−(µ′) ∀µ, µ′ ∈ [0, 1] (P-IC1)

σ+(µ) ≥ σ−(µ) ∀µ ∈ [0, 1]. (P-IC2)

The following lemma shows that an optimal mechanism (almost) always recommends the
agent to stay if the principal’s interim belief is (close enough to) 1.

Lemma 3. Any optimal mechanism must have lim
µ→1

σ+(µ) = σ+(1) = 1.

Proof. We first show σ+(1) = 1. Suppose to the contrary that there exists an optimal
mechanism σ with σ+(1) < 1. Consider the mechanism σ̃ defined by

σ̃+(µ) =

σ+(µ) if µ < 1
2

σ+(µ) + 1 − σ+(1) if µ ≥ 1
2 ,

σ̃−(µ) =

σ−(µ) if µ < 1
2

σ−(µ) + 1 − σ+(1) if µ ≥ 1
2 .

The mechanism σ̃ is well-defined because P-IC1, evaluated at µ = 1, implies σ+(1) ≥
σ+(µ) for any µ ∈ [0, 1]. It is straightforward to check that σ̃ satisfies all the constraints

16Note that the perturbation involves reducing σ1(µ) while increasing both σ2(µ, 1) and σ2(µ, −1).
In finding the contractible-optimal mechanism, we used a different perturbation argument: whenever
σ2(µ, 1) < 1, increase it to 1 while holding σ1(µ) and σ2(µ, −1) fixed. This is no longer adequate because
it may violate P-IC1.
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of (P) and gives the principal a strictly higher ex ante payoff. Thus σ could not have
been optimal.

Next, we argue that lim
µ→1

σ+(µ) = σ+(1). Consider the constraint P-IC1. Letting
µ′ = 1 and taking lim sup

µ→1
and lim inf

µ→1
on both sides of the inequality gives us

lim sup
µ→1

σ+(µ) ≥ σ+(1)

lim inf
µ→1

σ+(µ) ≥ σ+(1).

Since σ+(µ) ≤ σ+(1), we may conclude that lim
µ→1

σ+(µ) = σ+(1).

4.2 Characterization

We now construct the optimal mechanism by using two simple mechanisms. The first
simple mechanism always promotes the agent, regardless of the interim belief µ or the
state θ, and is clearly incentive compatible for the principal.

Definition 1. Let σ+ : [0, 1] → [0, 1] and σ− : [0, 1] → [0, 1]. The pair (σ+, σ−) is an
always-promote mechanism if σ+(µ) = σ−(µ) = 1 for all µ ∈ [0, 1].

O 1

1

µ

σ+(µ)
σ−(µ)

Figure 2: Always-Promote Mechanism

One may recall that, in Figure 1, we plotted σ1(µ) and σ2(µ, −1) to depict the
contractible-optimal mechanism. In this section, we instead plot σ+(µ) and σ−(µ). How-
ever, the figures can be directly compared for the following reasons. First, we have shown
that σ1(µ) = σ+(µ) for all µ. Second, in the contractible-optimal mechanism, either we
have σ1(µ) = 1, so that σ2(µ, −1) = σ−(µ), or we have σ1(µ) = 0, so that σ2(µ, −1) is
meaningless.

The second simple mechanism asks the agent to leave if the principal’s interim belief
is sufficiently low. As in the contractible-optimal mechanism, this helps to induce the
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agent to participate because the agent prefers to receive c1 for sure rather than receive
b with a sufficiently low probability. However, to satisfy the principal’s interim incentive
compatibility constraints, the mechanism must, upon keeping the agent in period 1,
sometimes promote him even in the bad state.

Definition 2. Let σ+ : [0, 1] → [0, 1] and σ− : [0, 1] → R+. The pair (σ+, σ−) is a
threshold mechanism if there exists µ∗ ∈ [0, 1) such that

σ+(µ) =

0 if µ < µ∗

1 if µ ≥ µ∗

σ−(µ) =

0 if µ < µ∗

q := µ∗

1−µ∗ if µ ≥ µ∗.

O µ∗ 1

q

1

µ

σ+(µ)
σ−(µ)

Figure 3: A Threshold Mechanism

If µ∗ > 1
2 , then q > 1, so that the threshold mechanism is not actually a feasible

mechanism; we might even have referred to the pair (σ+, σ−) satisfying the conditions
of Definition 2 as a “threshold pre-mechanism”. Later in this section, we will construct
an optimal mechanism by taking a convex combination (an operation we define shortly)
over multiple threshold mechanisms. The resulting convex combination must be a feasible
mechanism, but the individual threshold mechanisms need not be.

A threshold mechanism is parametrized by the threshold µ∗. In period 1, the principal
chooses from a menu consisting of two options. If the principal reports a pessimistic belief
µ < µ∗, the mechanism tells the agent, “I will never promote you, so please leave”. If
the principal reports an optimistic belief µ ≥ µ∗, the mechanism tells the agent, “I will
promote you with probability at least q = µ∗

1−µ∗ , so please stay”. Note that the principal’s
interim payoff from reporting that her belief is above µ∗ is increasing in her true belief.
Therefore, the mechanism is incentive compatible for the principal if and only if the
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principal is indifferent between her two options when her belief is equal to the threshold
µ∗. At µ∗, the probability of promotion the worker in the good state jumps up by 1,
while the probability of promotion in the bad state jumps up by q. Since the state is
good with probability µ∗, for the principal to be indifferent, it must be that µ∗ = (1−µ∗)q.
In contrast to the contractible-optimal mechanism (Proposition 1), where the principal
could flexibly choose both µE and qE, here µ∗ and q are coupled, and there is only one
degree of freedom. To incentivize the principal to truthfully reveal whether her belief is
below or above the threshold, it must be that reporting an optimistic belief above the
threshold forces the principal to promote the agent in the bad state with a probability
which is pinned down by the threshold.

Given a family of mechanisms (σ+
i , σ−

i ), i = 1, . . . , I, we may define a new mechanism
(σ+, σ−) by taking a convex combination: σ+ = ∑I

i=1 kiσ
+
i and σ− = ∑I

i=1 kiσ
−
i , where

ki ∈ [0, 1] for each i, and ∑I
i=1 ki = 1. Note that P-IC1 and P-IC2 are preserved under

convex combination. Figure 4 illustrates a convex combination of a threshold mechanism
and the always-promote mechanism.

O µi 1

1

µ

(σ+, σ−)

O µi 1

1

µ

Threshold

O 1

1

µ

Always-promote

σ+

σ−

Figure 4: (σ+, σ−) is a convex combination of threshold and always-promote.

The following theorem characterizes the optimal mechanism.

Theorem 1. There exists an optimal mechanism that is a convex combination of the
always-promote mechanism and at most three distinct threshold mechanisms.

Proof (sketch). See Appendix A.2 for a formal proof; here, we provide a sketch. Recall
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from Section 4.1 that our problem (P) is

max
σ+,σ−

∫ 1

0
(µσ+(µ) − (1 − µ)σ−(µ)) dF (µ)

s.t. c0 ≤ b
∫ 1

0
(µσ+(µ) + (1 − µ)σ−(µ)) dF (µ) + c1

∫ 1

0
(1 − σ+(µ)) dF (µ) (A-IR)

µσ+(µ) − (1 − µ)σ−(µ) ≥ µσ+(µ′) − (1 − µ)σ−(µ′) ∀µ, µ′ ∈ [0, 1] (P-IC1)

σ+(µ) ≥ σ−(µ) ∀µ ∈ [0, 1]. (P-IC2)

Because P-IC1 implies that σ+(µ) − σ−(µ) is non-decreasing when µ ≤ 1/2 and non-
increasing when µ ≥ 1/2, P-IC2 is equivalent to σ+(0) ≥ σ−(0) and σ+(1) ≥ σ−(1).
P-IC1 contains an infinite number of inequality constraints, but we may define ϕ(µ) :=
σ+(µ) + σ−(µ) and rewrite P-IC1 as

µϕ(µ) − σ−(µ) ≥ µϕ(µ′) − σ−(µ′) ∀µ, µ′ ∈ [0, 1].

This is reminiscent of the incentive compatibility constraints in a standard monopolist
screening problem with a single good if we think of µ as value, ϕ as allocation, and σ− as
transfer. Although the principal cannot pay money to the agent, σ− serves as a way of
transferring utility from the principal to the agent. The envelope theorem implies that
P-IC1 holds if and only if

σ−(µ) = σ−(0) + µϕ(µ) −
∫ µ

0
ϕ(x) dx ∀µ ∈ [0, 1]

ϕ(µ) is non-decreasing.

Thus ϕ pins down σ−(µ) up to a constant, and our problem can be reduced to that
of choosing ϕ and σ−(0) ∈ [0, 1]. Fixing σ−(0) ∈ [0, 1], we have a constrained problem of
finding a non-decreasing function ϕ : [0, 1] → [2σ−(0), σ−(1) + 1] that maximizes a linear
objective subject to two linear inequality constraints, A-IR and ϕ(1) ≥ 2σ−(1). By the
Bauer maximum principle, there exists ϕ that solves the constrained problem and is an
extreme point of the feasible set of the constrained problem.

Let E be the set of non-decreasing functions on [0, 1] that take on at most two values,
2σ−(0) and σ−(1) + 1. It is well known that E is the set of extreme points of the set
of non-decreasing functions from [0, 1] to [2σ−(0), σ−(1) + 1]. By Proposition 2.1. in
Winkler (1988), any extreme point of the feasible set of the constrained problem is a
convex combination of at most three elements of E. We may therefore restrict attention
to functions ϕ : [0, 1] → [2σ−(0), σ−(1) + 1] that are non-decreasing step functions with
at most three discontinuities. This means that we may also restrict σ+ and σ− to be non-
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decreasing step functions with at most three shared discontinuities. Such a mechanism
(σ+, σ−) is a convex combination of at most three threshold mechanisms and the always-
promote mechanism, where the weight on the always-promote mechanism is σ−(0).

Corollary 1 follows from Theorem 1 and explicitly describes the outcome of the convex
combination. Figure 5 depicts a generic form of the optimal mechanism.

Corollary 1. There exists an optimal mechanism σ = (σ+, σ−) that satisfies the following
conditions:

1. σ+(µ) is a non-decreasing step function taking values in {p, p1, p2, 1}, where 0 ≤
p ≤ p1 ≤ p2 ≤ 1.

2. σ−(µ) is a non-decreasing step function taking values in {p, q1, q2, 1}, where p ≤
q1 ≤ q2 ≤ 1

3. σ+(µ) ≥ σ−(µ) for all µ ∈ [0, 1].

4. σ+ and σ− share the same points of discontinuity.

5. σ+(1) = 1.

O µ1 µ2 µ3 1

p

p1

p2

1

µ

σ+(µ)
σ−(µ)

Figure 5: Optimal Mechanism

Given an arbitrary belief distribution F , Theorem 1 reduces the problem of finding
an optimal mechanism to a finite-dimensional one. It is without loss of optimality for the
recommendation and promotion probabilities to be constant in each interval of interim
beliefs, and there need be at most four such intervals. Consequently, it is also without
loss of optimality for the mechanism to have the principal only report which interval her
belief belongs to. For example, a firm may evaluate worker’s productivity with a letter
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grade of A, B, C, or D. Even if the firm receives more information about the worker than
can be conveyed by the letter grades, such a coarse grading scheme performs just as well
as any finer grading scheme would.17

In light of Theorem 1, let us identify each of the three threshold mechanisms with the
pair (qi, µi) for i = 1, 2, 3. Let p be the weight placed on the always-promote mechanism.
Define

c̃ := b
∫ 1

c1/2b

(
µ + (1 − µ) c1

2b − c1

)
dF (µ) + c1F (c1/2b).

The next proposition describes how the optimal mechanism depends on the agent’s ex
ante outside option.

Proposition 2 (Comparative Statics). There exists c̄ ∈ [c̃, b) such that the following
statements are true.

(i) If c0 ∈ (bµ0, c̄], then there exists an optimal mechanism that is a convex combination
of three threshold mechanisms with thresholds µi ∈ [0, 1) for i = 1, 2, 3.

(ii) Suppose c0, c′
0 ∈ (bµ0, c̄] with c0 > c′

0. Let {µi}i=1,2,3 be the three thresholds of
an optimal mechanism given c0, and {µ′

i}i=1,2,3 the three thresholds for an optimal
mechanism given c′

0. Then, it cannot be that µi < µ′
j for all i, j ∈ {1, 2, 3}.

(iii) There exist µ̄1, µ̄2, µ̄3 ∈ (0, 1] such that, for each c0 ∈ (c̄, b], we can find an optimal
mechanism that is a convex combination of the always-promote mechanism and three
threshold mechanisms with thresholds µ̄1, µ̄2, µ̄3. The weight p ∈ (0, 1] placed on the
always-promote mechanism is unique and is strictly and continuously increasing in
c0.

Proof. See Appendix B.4.

When the agent’s ex ante outside option is low (c0 ≤ c̄), for the principal to incentivize
the agent to participate, using threshold mechanisms is cheaper than using the always-
promote mechanism. To see why, consider the ratio at which each of the always-promote
mechanism and the threshold mechanism transfers utility from the principal to the agent,
relative to the principal’s most preferred mechanism, σ+ ≡ 1 and σ− ≡ 0. Since promo-
tion in the bad state gives the agent b and costs the principal −1, the always-promote
mechanism transfers the principal’s utility to the agent at a rate of b. The threshold

17On the other hand, it is not without loss for the principal to receive a coarse signal in period 1. As
we show in Appendix B.2, such a coarsening of the information structure relaxes the principal’s incentive
constraints in period 1 and may increase the principal’s optimal ex ante payoff.
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mechanism also sometimes promotes the agent in the bad state, transferring utility at a
rate of b. However, the threshold mechanism also asks the agent to leave if µ < µ∗. When
µ∗ is close to 0, this is a very efficient transfer of utility, since the agent becomes better off
by taking the interim outside option of c1 for sure rather than likely failing promotion and
receiving 0, while the principal does not lose much because she was unlikely to promote
him even if he stayed. As a result, for low values of c0, threshold mechanisms dominate
the always-promote mechanism.

Once c0 is above c̄, the thresholds remain constant at µ̄i, and the weight p on the
always-promote mechanism increases in tandem with c0. Intuitively, if c0 is very high,
the only way to meet the agent’s participation constraint is to promote him with ex ante
probability close to 1, but threshold mechanisms cannot do this because the promotion
probability in the bad state can be increased only by decreasing the probability that the
agent stays at the interim stage. Thus, when c0 is sufficiently high, it becomes optimal to
place a positive weight p on the always-promote mechanism. Since increasing p transfers
utility from the principal to the agent at a constant rate of b, once c0 is high enough that
p > 0 is optimal, for any higher value of c0, it is optimal to increase p while holding the
thresholds µi-s fixed.

4.3 Optimal Mechanism: Single Threshold Case

We now present a condition that guarantees the existence of an optimal mechanism that
is a convex combination of the always-promote mechanism and a single, rather than three,
threshold mechanism. For λ ≥ 0, define

T (µ∗, λ) :=
∫ 1

µ∗

(
µ − (1 − µ) µ∗

1 − µ∗

)
dF (µ)

+ λ

(
b
∫ 1

µ∗

(
µ + (1 − µ) µ∗

1 − µ∗ )
)

dF (µ) + c1F (µ∗)
)

.

λ0 :=
∫ 1

0 (1 − µ)dF (µ)
b
∫ 1

0 (1 − µ)dF (µ) + f(0)c1
.

T (µ∗, λ) is the sum of the principal’s and the agent’s payoffs from a threshold mechanism,
where the agent’s payoff is weighted by λ.

Consider the following condition:

T (µ∗, λ) is strictly concave in µ∗ for any λ ≥ λ0. (4)

Intuitively, condition (4) holds if the density f of the interim belief distribution is suffi-
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ciently flat. For instance, suppose f is differentiable, and define

f := min{f(µ) | µ ∈ [0, 1]}.

Condition (4) holds if f satisfies

0 ≤ f ′(µ) ≤ 2b

3b − c1
f, ∀µ ∈ [0, 1].

In particular, condition (4) always holds if the belief distribution F is Uniform.18

Theorem 2. Suppose condition (4) holds. Then, there exists an optimal mechanism
that is a convex combination of the always-promote mechanism and a single threshold
mechanism.

Proof. See Appendix B.5.

The following proposition is an analogue of Proposition 2 for when (4) holds.

Proposition 3 (Comparative Statics). Suppose condition (4) holds. Then, there exist
c̄ ∈ [c̃, č) and µ̄ ∈ (c1/2b, 1/2] such that:

(i) If c0 ∈ (bµ0, c̄], there exists a unique threshold mechanism that is optimal. The
threshold µ∗ satisfies µ∗ ≤ µ̄ and is strictly increasing in c0.

(ii) If c0 ∈ (c̄, b), there exists an optimal mechanism that is a convex combination of the
threshold mechanism with threshold µ∗ = µ̄ and the always-promote mechanism.
The weight p ∈ (0, 1] placed on the always-promote mechanism is unique and is
strictly and continuously increasing in c0.

Proof. See Appendix B.7.

The two cases of Proposition 3 are depicted in Figure 6. When the agent’s ex ante
outside option is low (c0 ≤ c̄), the optimal mechanism is a threshold mechanism, and µ∗

increases as c0 increases. Once c0 is above c̄, µ∗ stays fixed at µ̄, and the weight p on the
always-promote mechanism increases.

18For an alternative sufficient condition for (4) that does not require f to be monotone, see Appendix
B.6.
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σ+(µ)
σ−(µ)

Figure 6: Optimal Mechanism When (4) Holds

5 Properties of the Optimal Mechanism

5.1 Committing to Commit

By Proposition 2, regardless of the parameter values or the interim belief distribution
F , it is always optimal to place a positive weight on at least one threshold mechanism
with a strictly positive threshold µ∗ > 0.19 Like the contractible-optimal mechanism,
we interpret a threshold mechanism, or a mechanism which places weight on a threshold
mechanism, as a commitment about future commitments – in period 0, the principal
chooses a menu of interim commitments from which she is allowed to choose in period 1.

As was the case for the contractible-optimal mechanism, committing to commit incen-
tivizes the agent to participate in the mechanism by reducing his ex ante opportunity cost
of participation. Unlike in the contractible-optimal mechanism, incentive compatibility
requires that in order to ask the agent to leave when the principal’s interim belief is low,
when the principal’s interim belief is high, the mechanism must sometimes promote the
agent even if the state turns out to be bad. Proposition 2 tells us that committing to
commit remains valuable to the principal despite this friction. It is always optimal for
the principal to commit in period 0 to provide information in period 1 about her decision
in period 2.

It is crucial that the mechanism in period 1 not only restricts the period-2 promotion
decision, but also communicates this restriction to the agent. In our environment, the
value of committing to commit comes entirely from aiding the agent’s decision whether
to stay or leave in period 1. Indeed, if we were to assume that the principal were unable
to send messages to the agent in period 1, she would have no reason to make any decision

19Even if no weight is placed on the always-promote mechanism (case (i)), not all thresholds can equal
0, as otherwise the agent’s participation constraint would be violated.
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in period 1 with only partial information about the state.20

The following observation illustrates the importance of committing to commit: it is
even possible for the optimal mechanism to induce a lower ex ante probability of promo-
tion compared to the principal’s most preferred mechanism, σ+(µ) = 1 and σ−(µ) = 0.21

In such cases, the agent’s benefit from being able to make a better interim decision
outweighs his loss from a lower ex ante probability of promotion.

We do not claim that the optimal mechanism characterized by Proposition 2 is the
unique optimal mechanism. However, we argue in Section B.1 that both committing to
commit and ignoring information (which we discuss next) are necessary features of any
optimal mechanism.

5.2 Ignoring Information

When the agent’s ex ante outside option c0 is sufficiently high, the optimal mechanism
places a positive weight p > 0 on the always-promote mechanism. That is, with probabil-
ity p, the mechanism promotes the agent regardless of the principal’s reports in period 1
or 2; to make optimal use of the principal’s signals, the mechanism commits to sometimes
ignore them. As a result, the mechanism sometimes asks the agent to stay in period 1
and promotes him in period 2 even when the principal already knows in period 1 that
the state is bad, i.e. µ = 0.22 On the other hand, the contractible-optimal mechanism
always asks the agent to leave if the principal’s interim belief is sufficiently low (µ ≤ µE).
Thus the ignoring of information is a distortion that is caused by the interaction of the
principal’s incentive compatibility constraints and the agent’s participation constraint.

5.3 Memory

Consider σ2(µ, θ), which is the probability of promotion in period 2 conditional on the
agent having obeyed the interim recommendation to stay and conditional on the state

20There may be other environments in which the principal benefits from committing to restrict her
decision based on interim information, even if the restriction is kept hidden from the agent. Such a
commitment can relax the principal’s incentive compatibility constraints and may allow the principal
to implement outcomes (i.e. distributions over decisions conditional on each state) that she could not
implement without commitment.

21This is the case, for example, if b = 10, c0 = 8.975, c1 = 8, and f(µ) = (−1/10)(µ − 1/2) + 1. It
can be verified that the threshold mechanism with µ∗ = 1/2 is optimal. In this mechanism, the ex ante
promotion probability is

∫ 1
0.5 f(µ)dµ = 0.4875. In the principal’s most preferred mechanism, the agent

is promoted with probability
∫ 1

0 µf(µ)dµ ≈ 0.4917.
22Note that the probability that the agent stays in period 1 is constant at p on the interval [0, µ1).

Thus there exist µ, µ′ ∈ [0, µ1) such that µ < µ′, and such that the agent sometimes stays when the
belief is µ and sometimes leaves when the belief is µ′. It would be more efficient to leave more often µ
and stay more often at µ′, but such Pareto improvements are not achievable because of the principal’s
incentive constraints.
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being θ. In the optimal mechanism, does σ2(µ, θ) depend on µ? One might have answered
in the negative, since µ is payoff-irrelevant given θ, but our characterization of the optimal
mechanism says otherwise. Although we know from Lemma 2 that σ(µ, 1) is constant at 1,
σ(µ, −1) can depend non-trivially on µ – for instance, if condition (4) holds and c0 is large
(case (ii) of Proposition 3). An interpretation is that, when making the final promotion
decision, a firm’s HR department must consider not only the firm’s final assessment of a
worker, but must also retrieve its record of the firm’s past assessment. This is in contrast
to the contractible-optimal mechanism, which does not need to remember the period-1
belief report in making the period-2 promotion decision (Lemma 1).

6 Implementation

6.1 Midterm Review

How would a firm deciding whether to promote a worker implement the optimal mech-
anism? When σ2(µ, −1) is decreasing in µ, if the worker turns out to be unproductive
in period 2, he is less likely to be promoted when the firm had a higher belief about his
value in the past. One might worry that this feature makes implementation difficult, but
there exists a natural implementation that mirrors how the mechanism is constructed.
It follows from Theorem 1 that the optimal mechanism is a convex combination of 1) a
convex combination of at most three threshold mechanisms and 2) the always-promote
mechanism. The firm implements this by randomizing between two different promotion
schemes – with probability 1−p, the firm implements the convex combination of threshold
mechanisms, and with probability p, the firm implements the always-promote mechanism.

Although our definition of a threshold mechanism allows for the possibility that a
threshold mechanism is not a feasible mechanism by itself, the convex combination of all
threshold mechanisms that constitute the optimal mechanism must be a feasible mech-
anism, as otherwise the optimal mechanism would not be feasible either. Moreover, the
conditional probability σ2(µ, −1) of promoting the worker in the bad state is increasing in
µ under any convex combination of threshold mechanisms. To see this, consider the con-
vex combination of three threshold mechanisms with thresholds µi and weights ki ∈ (0, 1),
for i = 1, 2, 3 and ∑3

i=1 ki = 1. Suppose µ1 ≤ µ2 ≤ µ3. Then σ2(µ, −1) = σ−(µ)/σ+(µ) is
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given by

σ2(µ, −1) =



0 if µ ∈ [0, µ1)
µ1

1 − µ1
if µ ∈ [µ1, µ2)

1
k1 + k2

(
k1

µ1

1 − µ1
+ k2

µ2

1 − µ2

)
if µ ∈ [µ2, µ3)

k1
µ1

1 − µ1
+ k2

µ2

1 − µ2
+ k3

µ3

1 − µ3
if µ ∈ [µ3, 1],

which is clearly increasing in µ on [0, 1].23

Therefore, we may interpret the convex combination of threshold mechanisms as a
promotion scheme that consists of a midterm review and a final review. The review
may be an assessment of the worker’s qualities, or it may be an evaluation of business
opportunities that determine the firm’s demand for the worker. The midterm review
takes place in period 1, and the probability that the worker passes the midterm review is
a non-decreasing step function of the firm’s belief which is formed during the review. The
worker is asked to stay with the firm if he passes the midterm; otherwise, he is no longer
considered for promotion and is asked to leave. If the worker obeys the recommendation to
stay, he is reviewed again in period 2. During this final review, the firm observes whether
the worker is productive. If the worker is productive, he is promoted with certainty. Even
if he is not productive, he is promoted with a probability which is increasing in the firm’s
belief during the midterm review.

The interpretation of the always-promote mechanism is straightforward – the firm
simply promotes the worker without a review. Therefore, if the firm cannot contract
on its future information, and the worker has a high ex ante outside option, the firm
commits to review the worker only some of the time. With probability 1 − p, a review
takes place, and the worker is promoted if he passes both a midterm and a final review.
With probability p, the worker is not reviewed and is promoted by default. Although
there is no exogenous cost in reviewing, the firm sometimes chooses not to review due to
strategic concerns.

If the firm employs many workers, a probabilistic promotion threshold can be inter-
preted as a commitment to promote at least a certain fraction of workers. Under this
interpretation, it becomes important whether the state pertains to the firm or the work-
ers. If the state represents the workers’ individual abilities and is ex post heterogeneous
across workers, the firm may be able to implement the contractible-optimal mechanism.
This is not the case if the state represents firm-side uncertainty, so that the workers are

23If µ ∈ [0, µ1), we have σ1(µ) = σ+(µ) = 0, so σ2(µ, −1) is irrelevant and may be set to zero.
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homogeneous ex post.24 Alternatively, the firm could implement randomness by hav-
ing the low-productivity worker complete a so-called performance improvement plan, the
outcome of which depends mostly on luck rather than the worker’s productivity.

6.2 Robust Obedience

Can the worker know whether he is subject to a review or not?25 Since the worker’s
participation constraint binds in the optimal mechanism, when deciding whether to stay
or leave in period 0, the worker should not know whether he will be reviewed in the
future; otherwise, the worker will leave if he knows that he will be reviewed. Although
the worker’s interim obedience constraint does not bind in the optimal mechanism, if
the worker who is asked to stay learns that he was subject to and passed the midterm
review, his conditional probability of being promoted decreases, and this may lead him
to disobey the recommendation and leave the firm. If this is the case, to implement the
optimal mechanism, the firm must ensure that, even after the midterm review takes place,
the worker does not know whether the he has been reviewed. For example, if the review
consists of an interview, the firm may need to nominally interview the worker even if he
will be promoted by default.

However, the threshold mechanism may be sufficiently attractive that the worker’s
interim obedience is robust to additional information that he may have. To see this,
consider a threshold mechanism with a threshold of µ∗ > c1/2b. Under this mechanism,
the worker’s interim expected payoff after being recommended to stay in period 1 is

b

1 − F (µ∗)

∫ 1

µ∗

(
µ + (1 − µ) µ∗

1 − µ∗

)
dF (µ) (5)

>
b

1 − F (µ∗)

∫ 1

µ∗

(
µ∗ + (1 − µ∗) µ∗

1 − µ∗

)
dF (µ)

= 2bµ∗

> c1.

(5) shows that if a worker knows that he is playing a threshold mechanism with µ∗ > c1/2b,
and he has been recommended to stay, he should obey. The same would hold if the
worker is playing a convex combination of such threshold mechanisms. Therefore, if
the optimal mechanism is a convex combination of the always promote mechanism and
threshold mechanisms with thresholds all greater than c1/2b, the worker obeys the interim

24See Appendix B.2.2 for a comparison of these two cases.
25The convex combination of threshold mechanisms is by construction incentive compatible for the

firm, so the firm would report truthfully even if it knew whether the worker is being reviewed.
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recommendation to stay even if he learns that he is playing the convex combination of
the threshold mechanisms.

In fact, (5) implies an even stronger result. Suppose the worker is asked to stay
in period 1 and know that he is subject to reviews. Furthermore, suppose the worker
becomes aware that he barely passed the midterm review. That is, the firm’s belief was
µ̄, which is the lowest possible belief under which he is asked to stay. Even then, the
worker will be willing to stay. In other words, the firm does not lead the worker on. The
firm is sometimes more pessimistic than the worker about the probability of promotion,
but even if the firm honestly shared all of its information, the worker would still choose
to stay when asked to do so.

Proposition 4 (No Leading On). Suppose σ is an optimal mechanism that is a convex
combination of the always promote mechanism and threshold mechanisms. Suppose all
thresholds satisfy µi > c1/2b. Then, the agent obeys the recommendation to stay in period
1 even if he knows the principal’s interim belief µ and knows that the convex combination
of threshold mechanisms is being played.

The thresholds are greater than c1/2b if, for example, condition (4) holds and c0 ≥ c̄

(Proposition 3 (ii)).

7 Alternative Interpretations

Although the leading interpretation of our model throughout this paper is that of worker
retention, our model can be also used to understand relationship-specific investment or
forward guidance in policy-making.

7.1 Relationship-Specific Investment

Let us continue to interpret the principal as a firm and the agent as a worker. However,
suppose the worker does not have outside options. Instead, in period 0, the worker chooses
an amount of human capital investment, e ≥ 0, that is specific to the firm. The cost
of e units of this firm-specific human capital is 1/2e2. In period 1, the worker chooses
whether to incur a cost of ke to maintain the investment. If the worker maintains the
investment in period 1 and is promoted in period 2, he receives a benefit of be + d, where
d ≥ 0. The worker’s benefit equals 0 regardless of his choice of e if he does not maintain
the investment or if he is not promoted in period 2. Neither the worker’s choice of e in
period 0, nor his choice of whether to maintain the investment in period 1, is observed
by the firm.
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The firm receives a payoff of 1 from promoting the worker in period 2 if the state is
good, and the worker invested at least ē in period 0 and maintained this investment in
period 1. If the state is bad, the worker’s investment was less than ē, or the worker did
not maintain the investment, the firm’s payoff from promotion is −1. The firm obtains
0 from not promoting the worker in period 2. In period 1, the firm privately observes a
signal about the state and forms a belief µ ∼ F . In period 2, the firm observes the state.

The firm’s ideal contract would have the worker invest ē and maintain it, and then
promote the worker if and only if the state is good. On the other hand, the worker
does not wish to invest unless he believes the firm is likely to promote him. Because the
worker’s choice of e is never observed by the firm, it cannot be contracted on; for example,
the firm cannot commit to promote the worker only if the worker invested ē. The only
way for the firm to incentivize the worker to invest is by committing to promote him
with a high probability so that the worker is more likely to benefit from his investment,
and by committing to let the worker know in advance, in period 1, if he is unlikely to be
promoted, so that he may avoid paying the cost of maintaining his investment.

If the worker chooses to invest a strictly positive amount e > 0, he will obey the firm’s
recommendation to maintain the investment in period 1, as otherwise, he should not have
invested to begin with. If the worker is promoted in period 2 with ex ante probability x

and is asked with ex ante probability y to maintain the investment in period 1, then the
worker’s expected payoff from investing e in period 0 is

xbe − 1
2e2 − key + xd.

Thus the worker’s optimal choice of investment level in period 0 is xb − ky. The opti-
mal mechanism σ = (σ1, σ2) maximizes the firm’s expected payoff subject to the firm’s
incentive compatibility constraints and the constraint that the worker invests at least ē,
i.e.

ē ≤ b
∫ 1

0
σ1(µ)(µσ2(µ, 1) + (1 − µ)σ2(µ, −1)) dF (µ) − k

∫ 1

0
σ1(µ) dF (µ) .

This is equivalent to our model if we let c1 = k and c0 = ē + k.

7.2 Forward Guidance

Suppose the agent is a company that may exert positive externalities in the future but
will require a government subsidy to be profitable. For example, the company could be
making investments to develop a source of renewable energy that may or may not end
up being valuable. The company is willing to incur the investment cost only if it expects
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the principal, who is a regulator, to subsidize its final product.
In period 2, the regulator decides the level of subsidy, x ∈ [0, 1], to be provided to

the company. The regulator’s payoff is θx, where θ ∈ {−1, 1} is an uncertain state of the
world and represents the net marginal benefit of subsidizing the company – the marginal
value of the positive externality less the financial cost of a subsidy. The regulator forms
a belief µ ∼ F about the state in period 1 and observes the state in period 2. In each
of period 0 and 1, the company can either irreversibly shut down or continue to invest in
the product. If the company invests in both periods and receives a subsidy of x in period
2, the company’s payoff is bx, where b > 0. If the company shuts down in period 0 (1), it
receives a scrap value of c0 (c1). Before the company chooses whether to invest in period
0, the regulator can commit to a mechanism which communicates to the company in
period 1 and chooses the subsidy level in period 2 as functions of the regulator’s reports.

Our analysis shows how the regulator should provide forward guidance about her
future policy. The optimal forward guidance tells the company not only about the subsidy
level in period 2, but also about how the regulator will further commit herself in period 1.
By promising to reduce uncertainty for the company in period 1, the regulator can induce
the company to invest in period 0. Intuitively, when it invests in period 0, the company
purchases a real option which allows it to either shut down or invest once more in period
1. By committing to commit, the regulator increases the value of the real option to the
company.

8 Conclusion

This paper studies a principal who must make a decision in the future, gradually receives
private information about her payoffs from the decision, and faces an agent who wants
know what the principal will do. This problem is not uncommon – workers ask firms about
promotion prospects, firms ask regulators about future policy, and friends ask one another
to reply to dinner invitations – and yet have received little attention from the literature.
We introduce a parsimonious model that captures this problem and characterize the
optimal mechanism. To convince the agent to wait for her decision, the principal commits
today to commit tomorrow. When it is difficult to convince the agent, the principal
sometimes ignores her information and decides in the agent’s favor.
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A Omitted Proofs

A.1 Proof of Proposition 1

Clearly, µE must be unique in (i) since the principal’s ex ante payoff is strictly decreasing
in µE. Likewise, uniqueness holds for qE in (ii) and µE in (iii).

The Lagrangian of the problem can be written as
∫ 1

0
σ1(µ)(µ − (1 − µ)qE)dF (µ)

+ λ
(

b
∫ 1

0
σ1(µ)(µ + (1 − µ)qE)dF (µ) + c1

∫ 1

0
(1 − σ1(µ))dF (µ) − c0

)
,

where λ ≥ 0 is the multiplier for the constraint A-IR. Since we assumed that c0 >

bµ0, A-IR must bind. By the Lagrangian sufficiency theorem, if (σ1, qE) maximizes the
Lagrangian given some λ > 0, then (σ1, qE) is the contractible-optimal mechanism for
the value of c0 such that A-IR holds with equality under (σ1, qE).

Rearrange the Lagrangian as
∫ 1

0

(
σ1(µ)(µ − (1 − µ)q + λb(µ + (1 − µ)q) − λc1) + λc1

)
dF (µ) − λc0.

The integrand is affine in σ1(µ), and the coefficient of σ1(µ) is increasing in µ. Therefore,
for fixed values of qE and λ, µE maximizes the Lagrangian if and only if σ1(µ) = 1{µ ≥
µE}, where µE := qE+λ(bqE−c1)

1+qE+λb(1−qE) . We may thus rewrite the Lagrangian as a function of qE

and µE as follows:
∫ 1

µE

(µ − (1 − µ)qE) dF (µ) + λ
(

b
∫ 1

µE

(µ + (1 − µ)qE) dF (µ) + c1F (µE) − c0

)
.

The derivative of this Lagrangian with respect to qE is

(λb − 1)
∫ 1

µE

(1 − µ) dF (µ) .

First, if λ < 1/b, then the Lagrangian is maximized by qE = 0 and µE = λc1
1+λb

. This
(qE, µE) is contractible-optimal when the constraint A-IR holds with equality, i.e.

b
∫ 1

µE

µ dF (µ) + c1F (µE) = c0.

As we increase λ continuously from 0 to 1/b, µE increases continuously from 0 to c1/2b,
and the LHS of the above equality increases continuously from bµ0 to ĉ. This proves case
(i) of the proposition.
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Next, if λ = 1/b, then the Lagrangian is maximized by µE = c1/2b and any qE ∈ [0, 1].
This (qE, µE) is contractible-optimal when A-IR holds with equality, i.e.

b
∫ 1

c1/2b
(µ + (1 − µ)qE) dF (µ) + c1F (c1/2b) = c0.

As we increase qE continuously from 0 to 1, the LHS of the above equality increases
continuously from ĉ to č. This proves case (ii).

Finally, if λ > 1/b, then the Lagrangian is maximized by qE = 1 and µE = max
{
0, 1−λ(b−c1)

2

}
.

This (qE, µE) is contractible-optimal when A-IR holds with equality, i.e.

b(1 − F (µE)) + c1G(µE) = c0.

As we increase λ continuously 1/b to 1/(b − c1), µE decreases continuously from c1/2b to
0, and the LHS of the above equality increases continuously from č to b. This proves case
(iii).

A.2 Proof of Theorem 1

Define ϕ := σ+ + σ− and rewrite P-IC1 as

µϕ(µ) − σ−(µ) ≥ µϕ(µ′) − σ−(µ′) ∀µ, µ′ ∈ [0, 1].

By standard envelope theorem arguments, this is equivalent to

σ−(µ) = σ−(0) + µϕ(µ) −
∫ µ

0
ϕ(x) dx ∀µ ∈ [0, 1]

ϕ(µ) is non-decreasing.

The problem (P) is thus equivalent to the problem of choosing σ−(0), σ−(1) ∈ [0, 1] and
ϕ : [0, 1] → [0, σ−(1) + 1] to solve

max
∫ 1

0
(µϕ(µ) − σ−(µ)) dF (µ)

s.t. c0 ≤ b
∫ 1

0
(µϕ(µ) + (1 − 2µ)σ−(µ)) dF (µ) + c1

∫ 1

0
(1 − ϕ(µ) + σ−(µ)) dF (µ)

(A-IR)

ϕ(µ) is non-decreasing (P-ICb
1)

ϕ(µ) ≥ 2σ−(µ) for µ = 0, 1 (P-IC2)

σ−(µ) = σ−(0) + µϕ(µ) −
∫ µ

0
ϕ(x) dx ∀µ ∈ [0, 1]. (P-ICa

1)

34



Fix σ−(0), σ−(1) ∈ [0, 1] such that σ−(0) ≤ σ−(1).26 Fix ϕ(1) = σ−1(1)+1, which implies
ϕ(1) ≥ 2σ−(µ), and is without loss by Lemma 3. Consider the constrained problem (P ′)
of choosing ϕ : [0, 1] → [2σ−(0), σ−(1) + 1] :

max
ϕ

∫ 1

0
(µϕ(µ) − σ−(µ)) dF (µ)

s.t. c0 ≤ b
∫ 1

0
(µϕ(µ) + (1 − 2µ)σ−(µ)) dF (µ) + c1

∫ 1

0
(1 − ϕ(µ) + σ−(µ)) dF (µ)

(A-IR)

ϕ(µ) is non-decreasing (P-ICb
1)

ϕ(1) = σ−(1) + 1

σ−(µ) = σ−(0) + µϕ(µ) −
∫ µ

0
ϕ(x) dx ∀µ ∈ [0, 1]. (P-ICa

1)

We wish to show that there exists ϕ which solves (P ′) and takes the form described
in the statement of the theorem. Let L1([0, 1], [2σ−(0), σ−(1) + 1]) denote the normed
linear space of Lebesgue integrable functions from [0, 1] to [2σ−(0), σ−(1) + 1]. Let
M ⊂ L1([0, 1], [2σ−(0), σ−(1) + 1]) denote the convex set of non-decreasing functions
in L1([0, 1], [2σ−(0), σ−(1)+1]). Let F ⊂ M be the subset of functions in M that satisfy
two linear constraints, A-IR and

σ−(1) = σ−(0) + ϕ(1) −
∫ 1

0
ϕ(x) dx

⇔
∫ 1

0
ϕ(x) dx = σ−(0) + 1. (6)

We may view F as the feasible set of (P ′).27

By Helly’s selection principle28, a sequence of functions contained in M has a subse-
quence that converges pointwise to an element of M. By the dominated convergence the-
orem, this subsequence converges in the L1 norm. Therefore, M is sequentially compact
and thus compact. It is well known that the set E := {e : [0, 1] → {2σ−(0), σ−(1) + 1} |
e is non-decreasing} is the set of extreme points of M. Since F is the subset of a com-
pact set M that is the preimage of a linear mapping from M into a convex set in R2,
Proposition 2.1. in Winkler (1988) allows us to conclude that any extreme point of F , if
it exists, is a convex combination of at most three elements of E.

Since F ⊂ M is the continuous preimage of a closed set in R2, F is also compact.
26P-ICb

1 and P-ICa
1 imply that σ− is non-decreasing.

27A solution in F will be an equivalence class of functions that are almost-everywhere equivalent.
Once we obtain a solution in F , we may select a ϕ that is non-decreasing everywhere and satisfies
ϕ(1) = σ−(1) + 1. This ϕ will be a solution to (P ′).

28See, for example, Kolmogorov and Fomin (1975).
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Moreover, the objective function is affine in ϕ. Thus by the Bauer Maximum Principle,
given each choice of σ−(0) and σ−(1), there exists an extreme point of F that maximizes
the objective. That is, given σ−(0) and σ−(1), there exists an optimal solution ϕ to (P ′)
that is a convex combination of at most three elements of E.

Now, let us unwrap (ϕ, σ−) back into (σ+, σ−). Let e1, e2, e3 be the three elements of
E whose convex combination gives ϕ. Let µi denote the point at which ei is discontinuous.
By P-ICa

1, σ− is also non-decreasing and is a convex combination of at most three functions
e−

1 , e−
2 , e−

3 contained in E− := {e− : [0, 1] → {σ−(0), σ−(1)} | e− is non-decreasing}. We
index each e−

i so that it shares the same discontinuity as ei. Likewise, σ+ is a convex
combination of at most three functions e+

1 , e+
2 , e+

3 contained in E+ := {e+ : [0, 1] →
{σ−(0), 1} | e+ is non-decreasing}, and each e+

i shares the same discontinuity as ei and
e−

i .
Unless σ−(0) = 1, in which case the optimal mechanism is simply the always-promote

mechanism, none of e+
i can be equal to the constant function e(x) = σ−(0).29 This means

that each (e+
i , e−

i ) is the convex combination of a threshold mechanism with threshold µi

and the always-promote mechanism, where the weight on the latter is σ−(0). Therefore,
the constrained-optimal mechanism, which is a convex combination of (e+

i , e−
i ) for i =

1, 2, 3, is a convex combination of three threshold mechanisms and the always-promote
mechanism.

We have thus shown that, for any σ−(0) and σ−(1), there exists a convex combina-
tion of three threshold mechanisms and the always-promote mechanism that solves the
constrained problem (P ′). It remains to prove that there exists a solution of this form to
the unconstrained problem (P). We defer this to Lemma 6 in Appendix B.3.
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B Online Appendix

B.1 Necessary Properties of the Optimal Mechanism

In this section, we show that any optimal mechanism must feature committing to commit,
in the sense that σ+ must vary with µ. We also show that when the agent’s ex ante outside
option is sufficiently high, any optimal mechanism must sometimes ignore information, in
the sense that it must ask the agent to stay when µ = 0 and then, conditional on staying,
promote him with probability 1 in period 2.

Lemma 4. If σ is an optimal mechanism, it cannot be that σ+(0) > σ−(0) > 0.

Proof. Suppose to the contrary that σ = (σ+, σ−) is optimal and satisfies σ+(0) >

σ−(0) > 0. For ϵ > 0, consider a perturbation σϵ = (σ+
ϵ , σ−

ϵ ), where σ+
ϵ , σ−

ϵ : [0, 1] → R,
defined by

σ+
ϵ (µ) =

σ−(0) − σ+(0) if µ < ϵ

0 if µ ≥ ϵ

σ−
ϵ (µ) =


ϵ

1−ϵ
(σ−(0) − σ+(0)) if µ < ϵ

0 if µ ≥ ϵ.

Evaluating the principal’s payoff at σϵ gives
∫ ϵ

0
(σ−(0) − σ+(0))(µ − ϵ

1 − ϵ
(1 − µ)) dF (µ) ≈ O(ϵ).

Evaluating the agent’s payoff at σϵ gives

∫ ϵ

0
(σ−(0) − σ+(0))

(
(bµ − c1) + bϵ

1 − ϵ
(1 − µ)

)
dF (µ),

which, as ϵ → 0, converges to c1(σ+(0) − σ−(0)) > 0.
Let σideal = (σ+

ideal, σ−
ideal) given by σ+

ideal ≡ 1 and σ−
ideal ≡ 0 denote the principal’s ideal

mechanism that always recommends the agent to stay and promotes if and only if the
state is good. For α ∈ [0, 1], consider the mechanism

σ′ := α(σ + σϵ) + (1 − α)σideal = (α(σ+ + σ+
ϵ ) + (1 − α), α(σ− + σ−

ϵ )).

Since σ− is non-decreasing, and σ+ − σ− is non-decreasing when µ ≤ 1/2, it must be
that σ−(µ) ≥ σ−(0) and σ+(µ) − σ−(µ) ≥ σ+(0) − σ−(0) for µ ∈ [0, 1/2]. For ϵ small
enough, we have ϵ

1−ϵ
(σ−(0) − σ+(0)) > −σ−(0), so that σ′ is a mechanism. σ′ is incentive
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compatible by construction. When ϵ is small enough, σ + σϵ represents an arbitrarily
efficient transfer of utils from the principal to the agent, relative to σ. On the other
hand, taking a convex combination with σideal represents a transfer of utils from the
agent to the principal that is linear in α. Therefore, there must exist ϵ and α such that
σ′ satifies A-IR and gives a strictly higher payoff to the principal.

Lemma 4 allows us to prove the following result.

Proposition 5 (Necessity of Committing to Commit). If σ is an optimal mechanism,
σ+ cannot be constant in µ.

Proof. Suppose to the contrary that σ+ is constant. By P-IC1, σ− must be constant as
well. By Lemma 3, it must be that σ+ = 1. By Lemma 4, σ− = 0 or σ− = 1. The former
is ruled out by our assumption that c0 > bµ0. The latter is ruled out by our assumption
that c0 < b.

Lemma 4 can also be used to show that ignoring information is necessary when the
agent’s ex ante outside option is high.

Proposition 6 (Necessity of Ignoring Information). There exists c ∈ (bµ0, b) such that,
if c0 ≥ c, then any optimal mechanism must have σ+(0) = σ−(0) > 0.

Proof. By Lemma 4, it is enough to show that when c0 is sufficiently high, A-IR cannot
be satisfied by a mechanism that has σ−(0) = 0. If σ−(0) = 0, by P-IC1, it must be
that σ−(1

4) ≤ 1
3 . Since σ− is increasing, it follows that σ−(µ) ≤ 1

3 for µ ∈ [0, 1
4 ]. Thus

the agent’s ex ante expected payoff under any mechanism with σ−(0) = 0 cannot exceed
c := b −

∫ 1
4

0
2
3(1 − µ) dF (µ) < b.

Note that the necessary condition σ+(0) = σ−(0) > 0 cannot be cast aside as measure-
zero properties. This is because σ−(0) > 0 serves as a lower bound on σ−(µ) for all
µ ∈ [0, 1]. Moreover, interim incentive compatibility implies that σ− must be continuous
at µ = 0, and it is without loss to require that σ+ is continuous at µ = 0.

B.2 Additional Results

B.2.1 Agent-Optimal Mechanism: Tell Me Tomorrow

Suppose the principal has an ex ante outside option of terminating her relationship with
the agent. What mechanism maximizes the agent’s ex ante payoff subject to the par-
ticipation and incentive compatibility constraints of the principal? This can be viewed
as a model of optimal delegation, where the agent has commitment power and delegates

41



the promotion decision to the principal, who receives private, noncontractible informa-
tion. Although the agent always wants to be promoted, he must meet the principal’s
participation constraint and thus chooses to delegate the decision to the principal by
committing to a mechanism that makes promotion decisions as a function of the firm’s
reports. Our novelty relative to most of the literature on delegation is that the principal
and the agent disagree not only about what the promotion decision should be, but also
about the speed with which the uncertainty about the decision should be resolved. Unlike
the agent, the principal does not incur a cost from waiting to receive more information.
The agent-optimal delegation mechanism must therefore induce the principal not only to
decide in the agent’s favor, but to swiftly restrict her future decision.

Recall that, to solve our original problem of finding the principal-optimal mechanism
subject to the agent’s participation constraint, we maximize the Lagrangian, which is
a weighted sum of the principal’s and agent’s payoffs. Therefore, if a mechanism σ

is a principal-optimal mechanism given that the agent’s outside option is c0, and the
principal’s ex ante payoff from this mechanism is x, then σ maximizes the agent’s ex ante
payoff subject to the constraint that the principal’s ex ante payoff must be at least x,
and the agent’s payoff from σ equals c0. In the optimal mechanism, the agent asks the
principal not only to sometimes promote him against her wishes, but also to inform the
agent in period 1 about his chance of promotion in period 2.

B.2.2 Commitment to Marginal Distributions

One way to justify the use of a stochastic mechanism is to assume that there is a contin-
uum of agents. For example, if a firm employs a large cohort of workers, the firm may
commit to pass 80% of the workers in the midterm review and promote at least 50%
of those who passed the midterm. Note that this is only possible if the principal can
make different decisions for different agents; this may not be the case, for instance, for a
regulator who is legally required to equally subsidize all companies in an industry.

Formally, suppose that there is a unit mass of agents, and that the principal can
deviate from the mechanism as long as the marginal distribution of outcomes – the
measure of agents who stay in period 1 and the measure of agents in period 2 – is a
distribution that can arise from implementing the actual mechanism.30 What mechanisms
can the principal implement? The answer to this question depends crucially on the
distribution of the state θ. First, it may be that there is a continuum of agents that are
only ex ante homogeneous, and both µ and θ are drawn independently and identically
for each agent. This would be the case, for example, if θ represents the innate ability of

30This is an application of quota mechanisms pioneered by Jackson and Sonnenschein (2007). See Lin
and Liu (2022) for a recent application to Bayesian persuasion.
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each worker. On the other hand, it may be that the agents are ex post homogeneous, so
that a single µ is drawn in period 1 and a single θ is drawn in period 2. This may be
because θ represents the demand for the firm’s goods and thus shared by all workers at
the firm.

When the agents are ex ante homogeneous but ex post heterogeneous, being able
to commit to marginal distributions allows the contractible-optimal mechanism to be
implemented even when the principal’s signals are non-contractible. To illustrate, sup-
pose c0 ∈ [ĉ, č] and consider the contractible-optimal mechanism (qE, µE) = (qE, c1/2b)
(Proposition 1. (ii)). If the principal implements this mechanism, the measure of agents
who stay in period 1 is m1 := 1 − F (c1/2b), and the measure of agents who are promoted
is

m2 :=
∫ 1

c1/2b
(µ + (1 − µ)qE) dF.

Suppose the principal commits to recommend “stay” to m1 agents and promote m2

agents, and suppose she is allowed to deviate to any direct mechanism as long as these
two moment conditions are satisfied. In period 2, the principal will promote all agents
with θ = 1 and additionally promote agents with θ = −1 until m2 agents have been
promoted. Knowing this, in period 1, the principal will recommend “stay” to the agents
that she is the most optimistic about. This is precisely what the contractible-optimal
mechanism specifies. Intuitively, since the contractible-optimal mechanism already allows
the principal to keep the agents who are the most likely to be productive and then promote
the most productive agents, the principal cannot profitably deviate while honoring her
commitment to the the marginal distributions.

Next, suppose the agents are ex post homogeneous. Since only one µ is realized in
period 1, period 1 incentive compatibility must be satisfied, and the contractible-optimal
mechanism cannot generally be implemented. However, the optimal mechanism can be
implemented. For example, suppose condition (4) holds and c0 ∈ (c̄, b). To implement
the optimal mechanism given by statement (ii) of Proposition 3, says that the principal
commits to either keep p agents in period 1 and promote all of them in period 2, or keep
all agents in period 1 and promote q of them in period 2.

Finally, one may wish to microfound the principal’s ability to commit to marginal
distributions by requiring that each agent observes the measure of agents who stay in
period 1.31 This means that agents receive additional information about both the prin-
cipal’s belief about the state and the promotion probabilities conditional on the state.
Proposition 4 describes the condition under which the agents obey the recommendation

31This is related to the notion of credibility studied by Akbarpour and Li (2020).
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to stay even if they become aware of such information.

B.2.3 Principal’s Value for Interim Information

Does the principal always prefer a more informative interim belief distribution F? It is
clear that no F can be strictly worse for the principal than the uninformative distribution
F = δµ0 , since the principal with an informative F could simply commit not to communi-
cate in the interim period and obtain the same payoff as under F . Also, no distribution F

can be strictly better than the fully informative distribution F̄ . However, it is possible for
the principal to prefer an interim signal that is less informative in the sense of Blackwell.
To illustrate, let F = U [0, 1], b = 15, c0 = 13, and c1 = 7. The optimal mechanism is
depicted in the left-hand panel of Figure 7, and the principal’s expected ex ante payoff
is 0.156.

Oµ∗ = 0.27 1

.57

.73

1

µ

F is Uniform

Oµ∗ = 0.27 1

.57

.73

1

µ

Mean-Preserving Contraction

σ+(µ)
σ−(µ)

Figure 7: Effect of Mean Preserving Contraction (b = 15, c0 = 13, c1 = 7)

Consider the following mean-preserving contraction of the Uniform distribution:

µ =

µ∗/2 with proability µ∗

(1 + µ∗)/2 with proability 1 − µ∗.

Although this less informative signal does not have a density, it is straightforward to show
that under the new distribution, the principal can obtain a payoff of 0.183 by choosing

σ+(µ) = σ−(µ) =

0.07 if µ = 0.135

1 if µ = 0.635.

Intuitively, receiving less information relaxes the principal’s period-1 incentive com-
patibility constraints. Because the principal cannot promise not to act upon her period-1
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belief, learning less in period 1 can help her commit to a mechanism that otherwise would
not have been incentive compatible. Thus a firm may benefit from degrading the qual-
ity of information that it acquires about its employees, even when information can be
acquired for free.

B.2.4 Deterministic Mechanisms

The optimal mechanism may involve randomization of both action recommendations and
promotion decisions. If one were to restrict attention to deterministic mechanisms, there
would only remain two direct mechanisms that are incentive compatible and may satisfy
the agent’s ex ante participation constraint: the always-promote mechanism and the
threshold mechanism with µ∗ = 1/2. These are depicted in Figure 8. The principal’s
optimal deterministic mechanism would be the threshold mechanism with µ∗ = 1/2 if
c0 ∈ (bµ0, c1F (1/2) + b(1 − F (1/2)], and would be the always-promote mechanism if
c0 ∈ (c1F (1/2) + b(1 − F (1/2), b).

O 1

1

µ

Always-promote

O 1/2 1

1

µ

Threshold

σ+(µ)
σ−(µ)

Figure 8: Two Deterministic Mechanisms

In contrast, when the principal’s signals are contractible, Proposition 1 shows that
there exists a deterministic contractible-optimal mechanism as long as c0 ∈ (bµ0, ĉ] ∪ c0 ∈
[č, b). In addition, if signals are contractible, it is without loss for interim recommenda-
tions to be deterministic regardless of the value of c0. Hence, the restriction to determin-
istic mechanisms interacts with the noncontractibility of signals. It may be costless to use
deterministic mechanisms when signals are contractible, but under noncontractibility, the
restriction is binding except possibly when the agent’s ex ante outside option happens to
be c0 = c1F (1/2) + b(1 − F (1/2).3233

32Even if c0 = c1F (1/2) + b(1 − F (1/2), there is no guarantee that the threshold mechanism with
µ∗ = 1/2 is actually optimal.

33Restricting attention to deterministic mechanisms would also be without loss if c0 ≤ bµ0 or c0 = b,
which are corner cases that we have assumed away.
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B.3 Lagrangian Approach

This subsection describes the Lagrangian approach to solving problem (P). By Theo-
rem 1, (P) can be reduced to the problem of choosing a 7-tuple x = (µ1, µ2, µ3, p, k1, k2, k3),
which represents the three thresholds, µ1, µ2, µ3 ∈ [0, 1), the weight p on the always-
promote mechanism, and the weight ki on each of the threshold mechanisms satisfying
p + ∑3

i=1 ki = 1, in order to maximize the principal’s expected payoff subject to the
individual rationality constraint and σ+(1) ≥ σ−(1).34 Define

X1 = {x ∈ [0, 1)3 × [0, 1]4 | p +
3∑

i=1
ki = 1 and

3∑
i=1

ki
µi

1 − µi

≤ 1}

X2 = {x ∈ [0, 1)3 × [0, 1]4 | p +
3∑

i=1
ki = 1}.

For multipliers λ, η ≥ 0, define

t(µi, λ, η) :=
∫ 1

µi

(
µ − (1 − µ) µi

1 − µi

)
dF (µ)

+ λ

(
b
∫ 1

µi

(
µ + (1 − µ) µi

1 − µi

)
)

dF (µ) + c1F (µi) − c0

)

+ η

(
1 − µi

1 − µi

)

a(λ) :=
∫ 1

0
(µ − (1 − µ)) dF (µ) + λ(b − c0) .

The expression t(µiλ, η) represents a weighted sum of the principal’s and agent’s payoffs
(and the term corresponding to P-IC2 at µi = 1) induced by a threshold mechanism with
a threshold at µi. a(λ) is the weighted sum of payoffs induced by the always-promote
mechanism. The Lagrangians are

L1 = L(x, λ, 0) =
3∑

i=1
kit(µi, λ, 0) + pa(λ)

L2 = L(x, λ, η) =
3∑

i=1
kit(µi, λ, η) + pa(λ) .

A vector x1 ∈ X1 solves (P) if and only if there exists λ ≥ 0 such that x1 solves
34A linear combination of threshold mechanisms and the always-promote mechanism by construction

satisfies P-IC1 and σ+(0) ≥ σ−(0).
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maxx∈X1 L1, the A-IR constraint

b
∫ 1

µi

(
µ + (1 − µ) µi

1 − µi

)
)

dF (µi) + c1F (µi) − c0 ≥ 0

holds, and the complementary slackness condition is satisfied – either λ = 0, or the A-IR
condition holds with equality. Although t(µi, λ, 0) is not guaranteed to be concave in x
for arbitrary belief distributions F , the “only if” direction holds because the problem (P)
can be formulated to be linear in (ϕ, σ−(0)), where ϕ := σ+ + σ− as in Section A.2.35

Similarly, a vector x2 ∈ X2 solves (P) if and only if there exist λ, η ≥ 0 such that x2

solves maxx∈X2 L2, A-IR and ∑3
i=1 ki

µi

1−µi
≤ 1 hold, and the complementary slackness

conditions are satisfied – either λ = 0, or A-IR holds with equality; and either η = 0, or∑3
i=1 ki

µi

1−µi
= 1. We will make use of both Lagrangians to prove our results.

We next show that we may restrict each µi to lie inside a compact interval.

Lemma 5. There exists ϵ > 0, possibly dependent on b, c1, and F but independent of c0,
such that it is without loss to solve (P) across solutions x that have µi ∈ [0, 1 − ϵ] for
each i = 1, 2, 3.

Proof. The partial derivative of t(µi, λ, η) with respect to µi is

λb − 1
(1 − µi)2

∫ 1

µi

(1 − µ) dF (µ) − λf(µi)(2bµi − c1) − η

(1 − µi)2 , (7)

which can be rearranged to

−1
(1 − µi)2

∫ 1

µi

(1 − µ) dF (µ) + λ

(
b

(1 − µi)2

∫ 1

µi

(1 − µ) dF (µ) − f(µi)(2bµi − c1)
)

− η

(1 − µi)2 .

(8)
35(P) can be written as follows: choose σ−(0) ∈ [0, 1] and a Borel-measurable and non-decreasing

ϕ : [0, 1] → [0, 2] to solve

max
∫ 1

0
(µϕ(µ) − σ−(µ)) dF (µ)

s.t. c0 ≤ b

∫ 1

0
(µϕ(µ) + (1 − 2µ)σ−(µ)) dF (µ) + c1

∫ 1

0
(1 − ϕ(µ) + σ−(µ)) dF (µ) (A-IR)

ϕ(µ) ≥ 2σ−(µ) for µ = 0, 1, (P-IC2)

σ−(µ) = σ−(0) + µϕ(µ) −
∫ µ

0
ϕ(x) dx ∀µ ∈ [0, 1] (P-ICa

1)

ϕ(1) ≤ σ−(1) + 1.

Clearly, this problem is linear in (σ−(0), ϕ).
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L’Hopital’s Rule implies that

lim
µi→1

−1
(1 − µi)2

∫ 1

µi

(1 − µ) dF (µ) = −1
2 lim

µi→1
f(µi)

lim
µi→1

(
b

(1 − µi)2

∫ 1

µi

(1 − µ) dF (µ) − f(µi)(2bµi − c1)
)

=
(

−3
2b + c1

)
lim

µi→1
f(µi).

Both are strictly negative due to our assumption that limµ→1 f(µ) > 0. Therefore, there
exists ϵ > 0, independent of λ and η, such that for any µi ∈ (1 − ϵ, 1), we have (7) < 0.
Thus it is without loss to impose µi ≤ 1 − ϵ.

In light of Lemma 5, it is without loss to restrict the feasible sets to

X̄1 = {x ∈ [0, 1 − ϵ]3 × [0, 1]4 | p +
3∑

i=1
ki = 1 and

3∑
i=1

ki
µi

1 − µi

≤ 1}

X̄2 = {x ∈ [0, 1 − ϵ]3 × [0, 1]4 | p +
3∑

i=1
ki = 1}.

We may now complete the proof of Theorem 1 by stating the following lemma, which
holds since X̄2 is compact.

Lemma 6 (Completing the Proof of Theorem 1). Problem (P) has a solution.

The following lemma is similar to Propositions 3 and 2, but is stated in terms of the
Lagrangian multipler rather than the ex ante outside option.

Lemma 7. There exists a unique λ̄ > 0 such that

(i) For λ < λ̄, any x1 ∈ X̄1 that maximizes L1 must have p = 0.

(ii) For λ = λ̄, there exists x1 ∈ X̄1 with p > 0 that maximizes L1.

Proof. Consider the problem of maximizing L1 across x1 ∈ X̄1. If p < 1, then x1 must
solve

V (λ) ≡ max
x1∈X̄1

3∑
i=1

kit(µi, λ, 0) .

Clearly, we have V (0) > a(0). Consider the difference between the ex ante payoffs to the
agent under the always-promote mechanism and the the maximum ex ante payoff that
can be given to the agent under a mechanism with p = 0:

D := b − max
x∈X̄1

3∑
i=1

ki

(
b
∫ 1

µi

(
µ + (1 − µ) µi

1 − µi

)
)

dF (µ) + c1F (µi)
)

.
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D must be strictly positive.36 Also, the difference between the maximum ex ante payoff
that can be given to the principal under a mechanism with p = 0 and the ex ante payoff to
the principal under a mechanism with p = 1 is bounded above by 2, since the principal’s
payoff cannot be higher than 1 or lower than -1. Therefore, it must be that when λ is
large enough, we have V (λ) < a(λ).37

By the Maximum Theorem, V (λ) is continuous in λ. Since a(λ) is also continuous in
λ, there exists a smallest λ, strictly greater than 0, such that V (λ) = a(λ); let λ̄ denote
this number. For λ < λ̄, we have V (λ) > a(λ), so any optimal x must have p = 0. When
λ = λ̄, we can maximize the Lagrangian with any value of p.

Finally, we state a basic property of the Lagrangian.

Lemma 8. Fix b, c1, and F . Let λ and λ′ be two Lagrangian multipliers such that
λ > λ′. Suppose x = (µ1, µ2, µ3, p, k1, k2, k3) maximizes L(x, λ, 0) across X1, and x′ =
(µ′

1, µ′
2, µ′

3, p′, k′
1, k′

2, k′
3) maximizes L(x, λ′, 0) across X1. Then the agent’s ex ante payoff

must be weakly higher under x than under x′.

B.4 Proof of Proposition 2

Let λ̄ be as defined in Lemma 7. Let c̄ be the smallest value of the agent’s ex ante payoff
that can be obtained from a mechanism x ∈ X̄1 that maximizes L(x, λ̄, 0):

c̄ := min{pb +
3∑

i=1
ki

(
b
∫ 1

µi

(
µ + (1 − µ) µi

1 − µi

)
)

dF (µ) + c1F (µi)
)

| x ∈ arg max
x∈X̄1

L(x, λ̄, 0)},

which is well defined because arg max
x∈X̄1 L(x, λ, 0) is compact. To induce c̄, it must be

that p = 0, so we have c̄ < b.
By Lemma 8, for any c0 < c̄, the multiplier λ in the first Lagrangian must be weakly

smaller than λ̄. By the definition of c̄, it cannot be that λ = λ̄. Thus λ < λ̄, and by
Lemma 7, there exists x ∈ X̄ with p = 0 that solves the problem (P) and induces c0 as
the agent’s ex ante payoff.

It remains to show that c̄ ≥ c̃. Consider the second Lagrangian L2, and suppose
λ ≤ 1/b. The partial derivative (7) is always strictly negative when µi > c1/2b, so if L2

is maximized at some x2, it must be that µi ≤ c1/2b < 1/2 for all i. This means that if
λ ≤ 1/b, we have η = 0, and the two Lagrangians are equivalent. Since t(c1/2b, 1/b, 0) >

36See the proof of Proposition 6.
37Intuitively, as we place an increasingly large weight on the agent’s payoff, the using always-promote

mechanism eventually becomes optimal.
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a(1/b), we have V (1/b) > a(1/b). However, the coefficient of λ in t(c1/2b, λ, 0),

b
∫ 1

c1/2b

(
µ + (1 − µ) c1/2b

1 − c1/2b

)
dF (µ) + c1F (c1/2b) − c0 ,

is always smaller than b−c0, which is the coefficient of λ in a(λ). Thus t(c1/2b, λ, 0) > a(λ)
for any λ ≤ 1/b, which implies that V (λ) > a(λ) for any λ ≤ 1/b. Thus p must be 0
when λ ≤ 1/b, and by the definition of λ̄, we have λ̄ > 1/b. Also, when λ = 1/b, it can
be seen from (7) that all thresholds must equal c1/2b. The agent’s ex ante payoff from
this mechanism is c̃. By Lemma 8, we have c̄ ≥ c̃.

(ii) holds because the principal cannot be better off when c0 is higher. To show
(iii), consider x ∈ arg max

x∈X̄1 L(x, λ̄, 0) that induces c̄ for the agent. Let µ̄i denote
the thresholds of x. By keeping each threshold µ̄i fixed, increasing p from 0 to 1, and
proportionally decreasing ki for i = 1, 2, 3, we can obtain an optimal mechanism that
induces any value of ex ante outside option in [c̄, b]. By Lemma 4, it must be that µ̄i > 0
for each i.

B.5 Proof of Theorem 2

From the definitions of t and T , we have

t(µi, λ, η) = T (µi, λ) − λc0 + η

(
1 − µi

1 − µi

)
.

Since η(1 − µi

1−µi
) is concave in µi, as long as T (µi, λ) is strictly concave in µi, it must be

that t(µi, λ, η) is strictly concave in µi. Thus as long as λ ≥ λ0, there can be at most one
µi that maximizes the second Lagrangian L2, which means the optimal mechanism can
place a positive weight on at most one threshold mechanism.

It remains to show that it is without loss to restrict attention to λ ≥ λ0. Since
t(µi, λ0, 0) is strictly concave in µi, one can see from (8) that t(µi, λ0, 0) is maximized
at µi = 0. That is, when λ = λ0 and η = 0, the solution to L2 (and thus L1) is the
principal’s most-preferred mechanism, σ+(µ) = 1 and σ−(µ) = 0. This mechanism gives
a payoff of bµ0 to the agent. By Lemma 8, for any mechanism that is optimal given an
ex ante outside option c0 > bµ0, the corresponding multiplier must be at least as large as
λ0.

B.6 Alternative Sufficient Condition for (4)

The following proposition provides an alternative sufficient condition for (4) to hold.
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Proposition 7. Suppose f is continuously differentiable and satisfies

|f ′(µ)| < min
{

2b

3b − c1
,

2λ0b

1 − λ0b + λ0(2b − c1)

}
f ∀µ ∈ [0, 1].

Then, (4) holds.

Proof. The second partial derivative of t(µi, λ, η) with respect to µi is

∂t

∂µi

= λb − 1
1 − µi

(
2

(1 − µi)2

∫ 1

µi

(1 − µ)f(µ) dµ − f(µi)
)

(9)

− λf ′(µi)(2bµi − c1) − 2λbf(µi) − 2η

(1 − µi)3 .

Define f̄ := max{f(µ) | µ ∈ [0, 1]} and f̄ ′ := max{|f ′(µ)| | µ ∈ [0, 1]}, which are
well-defined because f is continuously differentiable. We have

∣∣∣∣∣λb − 1
1 − µi

(
2

(1 − µi)2

∫ 1

µi

(1 − µ)f(µ) dµ − f(µi)
)∣∣∣∣∣ ≤ |λb − 1| f̄ − f(µi)

1 − µi

≤ |λb − 1|f̄ ′ ,

and

|λf ′(µi)(2bµi − c1)| ≤ λ(2b − c1)f̄ ′.

Therefore, the second partial (9) is strictly negative if

f̄ ′ <
2λbf

|λb − 1| + λ(2b − c1)
∀µ ∈ [0, 1]. (10)

The assumption of the proposition implies that (10) holds for λ → ∞ and λ = λ0. But
the RHS of (10) is single-peaked in λ (with the peak at λ = 1/b). Therefore, (10) holds
for all λ ≥ λ0.

For example, when b = 2c1, |f ′(µ)| < 0.47 implies (4).

B.7 Proof of Proposition 3

Let µ̄ be the unique value of the optimal threshold µ∗ when the agent’s ex ante outside
option is c̄. By the same argument that was used to prove case (iii) of Proposition 2, for
c0 ∈ (c̄, b), it is optimal to place positive weights on both the always-promote mechanism
and the threshold mechanism with threshold µ̄. Consider the second Lagrangian L2. As
we showed in Appendix B.4, since a positive weight is placed on the always-promote
mechanism, it must be that λ > 1/b. Since a positive weight is placed on the threshold
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mechanism and λ > 1/b, by (7), it must be that either the threshold satisfies µ̄ > c1/2b

or η > 0. If η > 0, the period-2 incentive compatibility constraint σ+(1) ≥ σ−(1) must
bind, so it must be that µ̄ = 1/2 > c1/2b. We have thus shown that µ̄ > c1/2b.

In (i), µ∗ must be unique and strictly increasing in c0 because the principal’s payoff is
strictly decreasing in µ∗. Likewise, in (ii), p must be unique and strictly and continuously
increasing in c0 because the principal’s payoff is strictly and continuously decreasing in
p, while the agent’s payoff is strictly and continuously increasing in p.

All other results follow directly from Theorem 2 and Proposition 2.
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