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Abstract
Negative Emissions Technologies (NETs) — a range of methods to remove carbon
dioxide from the atmosphere — are a crucial innovation in meeting temperature targets
set by international climate agreements. However, mechanisms that undo the adverse
consequences of short-sighted actions (such as NETs) can fuel substitution effects and
crowd out virtuous behaviors (e.g., mitigation efforts). For this reason, the impact of
NETs on environmental preservation is an open question among scientists and policy-
makers. We model this problem through a novel restorable common-pool resource
game and use a laboratory experiment to exogenously manipulate the key features
of NETs and assess their consequences. We show that crowding out only emerges
when NETs are surely available and cheap. The availability of NETs does not allow
experimental communities to either conserve the common resource for longer or accrue
higher earnings and makes the earnings distribution more unequal.
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1 Introduction

To stabilize global temperature within safe limits, we must reach net zero global carbon
emissions.1 Meeting this target will require extensive mitigation efforts in most sectors. It
will also require deploying negative emission or carbon dioxide removal (CDR) technologies
to compensate for emissions from hard-to-abate sectors and developing countries that might
need more time to transition to clean technologies. In the short term, mitigation efforts
will play a major role, with negative emission technologies serving only as a complementary
instrument. In the medium term, however, when economies will be mostly decarbonized,
negative emissions technologies will be crucial. Their potential significance lies in their
capacity to counteract past excessive cumulative emissions. Indeed, achieving net negative
(rather than simply net zero) global emissions may be eventually necessary to offset the
accumulation of excessive emissions in the atmosphere (Riahi et al. 2022).

Negative Emissions Technologies (NETs) include various biological, chemical, and geo-
chemical processes capable of removing carbon dioxide from the atmosphere and storing it
in soils, materials, geological formations, and oceans. These methods range from long-time
known and widely used nature-based practices, such as afforestation and reforestation, to
less mature and more ambitious solutions relying on enhanced natural processes or carbon
capture and storage technologies, which operate either directly from the air or at plants
producing electricity with biomass.

While NETs’ role will be critical in solving the climate change crisis, their significance
is conditional on several factors. First, the feasibility of their large-scale deployment is still
debated within the scientific community (IPCC 2022, Minx et al. 2018, Fuss et al. 2018).
Depending on the technologies and the evolution of climate on Earth, several unanticipated
issues may arise. For example, while afforestation and reforestation are considered among
the most cost-effective methods for large-scale carbon dioxide removal, their potential could
be significantly diminished by climate change: as forests near critical resilience thresholds—
particularly in biomass-rich regions like the Amazon—their ability to recover may weaken.
Additionally, disturbances such as fires, windfall, and pest outbreaks are expected to become
more frequent and severe, further compromising forest resilience (Windisch et al. 2023). Sec-
ond, monitoring and verifying the long-term carbon dioxide sequestration poses a governance

1See Lacis et al. 2010 on the relationship between greenhouse gas concentration in the atmosphere
(especially carbon dioxide) and global temperatures over history; Pachauri et al. 2014 and Mann et al. 2017
on anthropogenic climate change; Field et al. 2014 on the severe negative consequences of a changing climate
on humans and their economic activities. In 2015, 196 countries pledged to hold the increase in the global
average temperature to well below 2◦C compared to pre-industrial levels through the legally binding Paris
Climate Agreement. To achieve this goal, emissions need to be urgently and drastically reduced and reach
the net zero target early in the second half of the century (Rogelj et al. 2018).
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challenge, as institutions must be created to guarantee the long-term permanence of these
stocks (Sovacool et al. 2023). Third, carbon dioxide removals might not be able to entirely
undo the effect of past carbon emissions if the temporary excess of emissions and the result-
ing overshooting of temperatures has triggered a tipping point, kick-starting an irreversible
natural process (Drouet et al. 2021).

Finally, and most critically from a social sciences perspective, negative emissions tech-
nologies present a significant moral hazard problem. If, instead of being perceived as a
complement to immediate emission reductions, they are considered a substitute for these
economically and politically costly short-term actions, they could ultimately delay or crowd
out current emissions abatement efforts. This risk of mitigation deterrence poses a serious
threat to our ability to limit global warming, as postponing emissions reductions may result
in irreversible damage. The danger is further amplified by the technical and implementation
challenges associated with NETs. Misjudging the uncertainty of their future availability, and
failing to treat removal technologies and emission reduction policies as independent, addi-
tive strategies, risks conflating their roles. This misunderstanding could forfeit a potential
reduction in end-of-century warming by as much as 0.5°C (Grant et al. 2021). Additionally,
neglecting the substitution effects and other unintended consequences of large-scale NET
deployment could lead to an underestimation of the required CO2 mitigation efforts, poten-
tially resulting in net CO2 additions equivalent to a further temperature increase of up to
1.4°C (McLaren 2020).

In this paper, we explore the role and risks of introducing mechanisms designed to re-
verse the consequences of past harmful actions. To do so, we model the substitution problem
associated with negative emissions technologies using a novel adaptation of the classic dy-
namic common pool resource game, a well-established framework for studying issues related
to natural resource use and conservation. In the standard version of this game, a group of
players share access to a finite resource, such as a fishery, groundwater basin, or forest; in
each period of an infinite horizon, each player decides how much to extract from the shared
resource; if total extraction is moderate, the resource regrows to its initial level and players
can harvest it again in the next period; if, instead, total extraction is excessive, the shared
resource is irreversibly exhausted, causing the game to end. The analogy to the real-world
problem is straightforward: overexploiting natural resources and engaging in high-emission
activities may provide economic benefits in the short term but ultimately harm long-term
well-being and sustainability. Conversely, adopting conservative resource use and commit-
ting to low-emission targets could impose short-term costs on individuals but yield collective
benefits by ensuring community subsistence in the medium to long term—provided that all
members commit to and maintain a coordinated, virtuous course of action.
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To study the role of negative emission technologies, we conduct a laboratory experiment
to investigate behavior in a novel environment: the restorable common-pool resource game.
In this game, when collective extraction is excessive, a restoration technology may success-
fully reverse resource exhaustion if agents are willing to invest a sufficient amout of resources
in this endevour. In addition to a Baseline condition in which restoration technologies are
never available, we investigate four treatments, manipulating the cost (High versus Low) and
uncertainty of restoration availability (Certain versus Uncertain) with a factorial design.

Our results show that heavy reliance on restoration, which crowds out sustainable har-
vesting strategies, occurs only when restoration technologies are cheap and available with
certainty. In all other cases, players tend to conform with the behavioral pattern observed
in the Baseline, where most groups succeed in coordinating on a virtuous, feasible harvest-
ing equilibrium. In addition, the presence of restoration technologies neither allows groups
to conserve the resource for longer nor to accrue higher earnings, net of short-term effects.
Instead, it contributes to exacerbating earnings inequality within groups. This evidence un-
derscores the validity of concerns about the risk that NETs crowd out short-term mitigation
efforts, particularly when these fail-safe mechanisms are (possibly mistakenly) perceived as
low-cost and easily accessible.2 Notably, our experimental results reveal that this undesir-
able effect disappears when agents recognize that reversing their previous harmful actions is
either costly or uncertain.

Our paper contributes primarily to the experimental literature examining mechanisms
that foster cooperation in social dilemmas, particularly in settings that mimic the key features
of the climate crisis, such as dynamic public goods games and dynamic common-pool resource
games (e.g., Fischer et al. 2004; Hauser et al. 2014; Battaglini et al. 2016; Gächter et al.
2017; Tasneem et al. 2017; Calzolari et al. 2018; Cason and Zubrickas 2019; Vespa 2020;
Lohse and Waichman 2020; Nockur et al. 2020).3 These studies explore how the evolution
of durable public goods or common resources is influenced by contextual and institutional
factors, such as group size, the persistence of actions on future outcomes, refund mechanisms
for contributions, the action space, resource stock levels, and whether decisions are made
through decentralized mechanisms or centralized processes like voting, bargaining, or peer

2Evidence of stark promotion efforts in favor of carbon capture and storage (CSS) technologies by fossil
fuel and other high-pollution industries is widespread (https://www.theguardian.com/environment/2023/
dec/08/at-least-475-carbon-capture-lobbyists-attending-cop28) Both online and offline — during
official events such as the COP28 — interested stakeholders advertise such technologies, over-promising the
capacity and effectiveness of their CSS projects, and pushing for their adoption as an opportunity to license
themselves to keep their business and production plans unchanged, refraining from taking concrete actions
to reduce their emissions

3Less directly related are experiments using static public good or common-pool resource games to study
environmental sustainability, which focus on short-term incentives and outcomes (e.g., Ostrom 2008; Gächter
et al. 2022; Manara et al. 2025).
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punishment.
The key innovation of our design is the introduction of reversible actions: we extend

the stage game of a dynamic common-pool resource game by incorporating a restoration
stage, where players can make a costly investment to undo previous (potentially excessive)
harmful actions. The closest contribution in this regard is Battaglini et al. (2016), who
study the accumulation of a durable public good through voluntary contributions. Some of
their treatments allow for negative contributions, enabling players to reverse earlier virtuous
actions. In contrast, our framework focuses on reversing selfish and hazardous behavior rather
than undoing cooperative actions. Moreover, while Battaglini et al. (2016) compare the
effects of reversible and irreversible actions, they do not vary key aspects of the reversibility
environment—such as the cost of reversing previous decisions or the uncertainty surrounding
its availability—elements we manipulate explicitly in our design.

More broadly, we contribute to the growing literature that uses experimental and survey
methods to examine individuals’ attitudes and behaviors toward climate change and miti-
gation policies (e.g., Dechezleprêtre et al. 2022; Tannenbaum et al. 2022; Fabre et al. 2023;
Andre et al. 2024). While these studies provide valuable insights into the drivers of (still
insufficient) public support for climate mitigation, they usually rely on surveys assessing
respondents’ attitudes toward specific policies and focus on interventions like information
provision, without accounting for emissions removal options. Our work complements this
literature by introducing emissions removal options in a controlled experimental setting, al-
lowing us to exogenously manipulate key features of the decision-making environment and
assess their impact on mitigation efforts.

Within this strand, the closest related studies are experiments that analyze individuals’
willingness to engage in voluntary carbon offsetting, focusing on the causal effects of offsets’
costs and effectiveness (Rodemeier 2022) or providing information on carbon footprint re-
duction strategies, the reinvestment of carbon tax revenues, and the uncertainty of emissions
impacts (Bernard et al. 2023; Woerner et al. 2024; Pace et al. 2025). However, unlike these
studies, which center on individual decision-making, our paper models mitigation as a coop-
eration problem. We analyze group dynamics, free-riding behavior, and the trade-off between
mitigation and emissions removal—an aspect absent in existing experimental designs.

Finally, the effects of Negative Emission Technologies (NETs) on mitigation deterrence
have been extensively studied using Integrated Assessment Models (IAMs). These compu-
tational tools synthesize insights from climate science, engineering, and economics to gener-
ate policy-relevant projections on global environmental change and sustainable development
(e.g., Emmerling et al. 2019; Bosetti 2021; Giannousakis et al. 2021; Grant et al. 2021).
While this literature highlights significant risks of mitigation deterrence, particularly when
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uncertainties about NET scalability are overlooked, IAMs typically assume optimal decision-
making from a social planner’s perspective. As a result, they neglect the voluntary provision
and cooperation dynamics that are central to real-world outcomes—elements we explicitly
address in our theoretical framework and experimental analysis.

2 The Restorable Common Pool Resource Game

Building on existing work, we model the climate mitigation problem as an infinite-horizon
common-pool resource game. Since our research question concerns the role of a technology
that allows restoration of the resource after its exhaustion, we augment the classic paradigm
and develop novel game: the restorable common-pool resource game.

We consider a community of n ≥ 2 homogenous individuals who interact for an infinite
number of periods and discount future payoffs with a factor δ ∈ [0, 1]. Each period t =
{1, 2, . . . , ∞} features an Extraction and a Restoration Phase.4

In the Extraction Phase:

• The common pool resource counts K > 0 units.

• Each player i receives an endowment w > 0.

• Each player i makes simultaneously an individual extraction choice eit ∈
[
0, K

n

]
.

• If ∑
eit ≤ TE, the resource is conserved, and the game continues to another period.

• If, instead, ∑
eit > TE, the game continues to the Restoration phase with probability

ρ ∈ [0, 1]; the resource is exhausted and the game ends with probability (1 − ρ).

In the Restoration Phase (if reached):

• Each player makes simultaneously an individual restoration choice rit ∈ [0, w]

• If ∑
rit ≥ TR > 0, the resource is restored, and the game continues to another period

• If, instead, ∑
rit < TR, the resource is exhausted and the game ends

Player i’s utility in period t is given by uit = w + eit − rit, where w is the initial endow-
ment, eit is the individual benefit from extraction, rit is the individual cost from restoration.
Assuming rit ≤ w guarantees uit ≥ 0, which is useful for the experimental implementation.
We make two additional assumptions.

4Figure 1 summarizes the timing of a single period in the infinite-horizon game.
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Figure 1: Dynamics of the Restorable Common Pool Resource Game

a. Without Restoration (ρ = 0) b. With Restoration (ρ > 0)

Extraction
Stage (ei)

Game Ends

if ∑
ei ≤ TE

if ∑
ei > TE

Extraction
Stage (ei)

Game Ends

Restoration
Phase (ri)

Restoration
Available

Restoration
Not Available

if ∑
ei ≤ TE

if ∑
ei > TE

if∑
ri ≥ TR

if∑
ri < TR

Panel a: In the absence of restoration technologies, the game only counts one stage — the Extraction Stage
— in which each group member makes an extraction choice (ei); if total extractions do not exceed the
threshold (

∑
ei ≤ TE) the game continues to another period, reaching a new Extraction Stage; otherwise,

the game ends immediately. Panel b: In the presence of restoration technologies, the game counts two
stages: the Extraction Stage and the Restoration Stage. In the latter, each group member makes a
restoration choice (ri) that is relevant only if total extractions exceed the threshold and restoration is
available; if Restoration is available and aggregate restoration is high enough (

∑
ri ≥ TR), the game

continues to another period, reaching a new Extraction Stage; if instead, Restoration is available, but
aggregate restoration is not high enough (

∑
ri < TR), the game ends; if Restoration is not available and

total extractions exceeded the threshold, the game ends as in the case without restoration.
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Assumption 1 (No Unilateral Conservation) We assume that
(

n−1
n

)
K > TE > 0, that

is, a single group member cannot unilaterally conserve the resource in the Extraction Phase
if everybody else is extracting maximally.

Assumption 2 (No Unilateral Restoration) We assume that K > TR > W
n

, that is,
a single group member cannot unilaterally restore the resource in the Restoration Phase if
everybody else makes no restoration effort.

2.1 Equilibrium Analysis

We focus on symmetric and stationary subgame perfect Nash equilibria (SPNEs) of the
game. We note that there can only be (at most) four symmetric and stationary SNPEs:5

1. (Extract, Don’t Restore) where, in each period, e⋆
i = K

n
and r⋆

i = 0

2. (Conserve, Don’t Restore) where, in each period, e⋆
i = TE

n
and r⋆

i = 0

3. (Extract, Restore) where, in each period, e⋆
i = K

n
and r⋆

i = TR

n

4. (Conserve, Restore) where, in each period, e⋆
i = TE

n
and r⋆

i = TR

n

In Appendix A, we characterize conditions on the game’s parameters for each of these
four potential equilibria to exist. The (Extract, Don’t Restore) equilibrium exists for any
degree of patience because, according to Assumptions 1 and 2, if a player believes others
are extracting as much as they can and investing as little as they can in restoration, there
is nothing he can unilaterally do to conserve or restore the resource and behaving selfishly
in both stages is the best response. When, instead, players believe others are cooperating,
an equilibrium with (perpetual or temporary) resource preservation is feasible as long as
players are sufficiently patient to give up the immediate gratification of greater resource
exploitation and smaller restoration investment for the delayed benefit of longer resource
life. As the sustainable level of extraction (TE) grows, the players’ degree of patience needed
to support the equilibrium (Conserve, Don’t Restore) decreases. On the other hand, as the

5Payoffs in a period are strictly increasing in eit and strictly decreasing in rit. Moreover, transition
probabilities across periods and phases within a period are insensitive to marginal changes in eit unless∑

eit = TE , and insensitive to marginal changes in rit unless
∑

rit = TR. It follows that, in any period of
any symmetric and stationary equilibrium, players must choose either eit = K

n (i.e., maximal extraction) or
eit = TE

n (i.e., the largest symmetric extraction which ensures conservation). Similarly, they must choose
either rit = 0 (i.e., minimal restoration) or rit = TR

n (i.e., the minimal symmetric restoration which avoids
exhaustion). No other strategy can be part of a symmetric and stationary equilibrium because, if that were
the case, each player could unilaterally deviate and extract marginally more (thus increasing the payoff in
the current period) without changing the transition between periods or between phases within the same
period (thus, leaving the continuation value of the game unchanged).
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investment required for restoration (TR) grows, the players’ degree of patience needed to
support the (Extract, Restore) equilibrium increases.

We also highlight that while the outcomes on the equilibrium path and the efficiency
of the (Conserve, Restore) equilibrium are the same as in the (Conserve, Don’t Restore)
equilibrium, the equilibrium with restoration off the equilibrium path (which only exists
when restoration is available) can be harder to sustain in terms of players’ degree of patience
(and, indeed, this will be the case with our experimental parameters). This is due to the
moral hazard or mitigation deterrence risk discussed in the Introduction.

Finally, we note that multiple equilibria coexist for a wide range of parameters. While
equilibrium selection is one of our main research questions (and, thus, experimental pa-
rameters were purposefully chosen to ensure equilibrium multiplicity in all treatments), one
criterion that can be used to refine predictions and select one equilibrium ex-ante is the
efficiency of equilibrium outcomes (in a utilitarian sense). First, when they exist, both the
(Conserve, Don’t Restore) equilibrium and the (Extract, Restore) equilibrium Pareto dom-
inate the (Extract, Don’t Restore) equilibrium. Second, when restoration is available with
certainty, the (Extract, Restore) equilibrium is more efficient than the (Conserve, Don’t Re-
store) equilibrium if and only if K − TR > TE, that is, depending on what equilibrium leads
to a greater aggregate per period consumption.

3 Experimental Design

We conducted the experimental sessions in June 2023 at the Bocconi Experimental Labora-
tory for the Social Sciences with students from Bocconi University recruited from a database
of volunteers.6

Treatments. We used a between-subject design to implement five treatments, manipulat-
ing restoration technologies’ availability and cost, as detailed in Table 1. In all treatments,
we use a neutral framing, without mentioning the climate or the environment; groups are
composed of n = 5 members; at the beginning of each period, the common resource counts
K = 100 units; in each period, each group member receives an endowment of wit = 20
units and chooses simultaneously and independently how much to extract from the resource,
between a minimum of 0 and a maximum of K

n
= 20 units; if the total extraction in a pe-

riod exceeds TE = 50, the resource is depleted (irreversibly so when restoration technology
6The study was approved by the Bocconi University Ethics Committee on February 20, 2023 (FA000565)

and pre-registered on AsPredicted on May 22, 2023 (#133060). The pre-registration is available at https:
//aspredicted.org/ZS8_3Q5. The experimental instructions are available in Appendix J.
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Table 1: Experimental Design

Treatment ρ TE TR Sessions Subjects Groups
T1 - No Restoration (Baseline) 0 50 – 6 120 312
T2 - Uncertain / Low 0.5 50 25 6 120 216
T3 - Certain / Low 1 50 25 6 120 184
T4 - Uncertain / High 0.5 50 75 6 120 208
T5 - Certain / High 1 50 75 6 120 196

Notes. ρ denotes the probability restoration is available; TE and TR denote threshold values for group
total extraction and restoration choices, respectively. The total number of groups varies across treatments
due to the different number of supergames played per session. See Table 11 in Appendix G for descriptive
statistics about the total number of supergames played per treatment.

is unavailable); if, instead, the total extraction in a period is less than TE, the resource
regenerates and the game continues for another period; the discount factor is δ = 0.8 and
is implemented through a block random termination rule protocol (Fréchette and Yuksel
2017).7

The Baseline treatment is a standard infinite-horizon common-pool resource game.
No restoration technologies are available; thus, if the total extraction in a period exceeds
TE = 50, the resource is irreversibly depleted, and the game ends. We introduce restoration
technologies in four additional treatments where, using a factorial design, we manipulate
(a) whether the ability to restore is Certain (ρ = 1) or Uncertain (ρ = 0.5); and (b)
whether the cost of restoration, that is, the minimum total effort needed for restoration to
undo depletion successfully, is High (TR = 75) or Low (TR = 25). Table 1 summarizes.

Choices and Beliefs. We elicit restoration choices using the strategy method, in which
a respondent makes conditional decisions for each possible information set (Brandts and
Charness 2011; Fischbacher et al. 2012). In our environment, this means that participants
make restoration choices after they make their extraction choices, but before they learn
whether the restoration stage is eventually reached, that is, before they know whether total
group extraction was excessive — and restoration technologies available in treatments with
uncertain restoration. While restoration choices are elicited in every period, they are payoff-
relevant only when the restoration stage is reached. We opt for this method (rather than
the direct response method) to obtain observations at both stages of our game without
selection issues. At the end of each period, subjects learn the status of the resource and

7Participants play in blocks of 5 rounds, as long as the resource is conserved (as determined by total
extraction in a period). At the end of each block, participants learn the realizations of the random number,
determining whether the game continued or not at the end of each period in the block, how many rounds in
the block mattered for their earnings, and if the game continued to another block.
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receive comprehensive feedback on total group extraction and restoration (if available) levels
reached, including a breakdown detailing the choices made by each group member. The
experiment is divided into two parts: Part 1 includes the first six supergames; Part 2 consists
of the other supergames. In Part 2, we also elicit participants’ beliefs about the sum of the
other group members’ extraction and restoration choices. We do this at the end of each
period before participants receive the end-of-period feedback.

Supergames. All sessions count 20 participants. At the beginning of each supergame (a
repetition of the infinite-horizon game), we form four groups of five members. We use a
partner matching protocol within supergames and a stranger matching protocol across su-
pergames. A supergame ends when either (i) the random termination rule decides so or
(ii) the resource is depleted and not restored in the round. Participants play all supergames
started within 60 minutes from the beginning of the first supergame.8 To reduce concerns re-
lated to the chance that the realized length of early supergames affects participants’ behavior
in later supergames, possibly interacting with or confounding the effect of our treatments,
we control for supergames’ realized length across treatments (Mengel et al. 2022).9

Earnings. Participants are paid for their cumulative payoff in one randomly selected su-
pergame from Part 1 and one randomly selected supergame from Part 2. In addition, we
select one round of a different supergame played in Part 2 and pay a fixed prize to participants
whose reported belief about the sum of the other group members’ extraction or restoration
choices is accurate.10 Each session lasted approximately 90 minutes, and participants earned,
on average, €27.6, including a €7.5 show-up fee.

Sample Size. We recruited 600 participants and split them equally across the five treat-
ments, resulting in 120 participants per treatment. This sample size is based on the behavior

8After reading the instructions and before the first supergame, subjects answer three comprehension
questions and have up to two attempts to answer them correctly. If they fail, subjects are not excluded
from the session but can continue only after a debriefing session with the experimenter. This ensures all
subjects understand the instructions well before playing the first supergame. Table 12 in Appendix G shows
the performance in the comprehension quiz.

9In particular, we use the following procedure: i) we organize experimental sessions in batches of 5
sessions each, in which one session per each treatment condition is included; ii) within each batch, we let
the software randomly determine the length of all (potential) super-games to be played for the first session
(in which participants are assigned to the Baseline treatment); the same realizations are used to determine
the length of all (potential) super-games to be played in all other sessions belonging to the same batch.

10Both beliefs we elicit can range between 0 and 80. As in Aoyagi et al. (2024), we randomly draw two
numbers from [0; 80], and the belief is considered to be accurate if the distance between the actual value and
participants’ stated belief is smaller than the distance between the actual value and any of the two randomly
extracted numbers.
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we observed in two pilot sessions we conducted in March 2023 with 20 participants in the
Baseline treatment and 20 participants in the Certain Restoration/Low Cost treatment.11

Theoretical Predictions. Given our experimental parameters, the (Extract, Don’t Re-
store) equilibrium exists in all treatments, regardless of δ; the (Conserve, Don’t Restore)
equilibrium exists in all treatments as long as δ ≥ 1/4; the (Extract, Restore); and the
conditions for the existence of the (Extract, Restore) and (Conserve, Restore) equilibria in
the four treatments where restoration is available (ρ > 0) are summarized in Table 2. Since
we use δ = 4/5, our careful choice of experimental parameters leads to multiple equlibria: in
all treatments, both equilibria with immediate depletion and equilibria with longer resource
life exist. At the same time, the introduction of the restoration technology expands the set
of equilibria compared to the Baseline treatment, since conservation can be achieved either
through limited extraction and no need for restoration or through exploitation followed by
restorative efforts. While the experiment is meant to provide evidence of participants’ co-
ordination on a particular equilibrium (and on how this might change as a function of the
treatment), we can make sharper theoretical predictions by focusing on the most efficient
SPNE, an equilibrium refinement commonly used in the literature on dynamic games (see,
for example, Dixit et al. 2000). Given our experimental parameters, the SPNEs that deliver
the largest sum of discounted utilities at the beginning of the game are (Conserve, Restore)
and (Conserve, Don’t Restore) in all but one treatment. The exception is the treatment
with Certain Restoration (ρ = 1) and Low Cost (TR = 25), where the efficient equilibrium
prescribes maximal extraction followed by restoration.

4 Discussion of Experimental Design

Our experiment investigates a complex common resource management problem with in-
tertemporal and uncertain dynamics. To recreate this environment in a controlled labora-
tory setting, we distilled the key aspects of the real-world problem into a simplified, stylized

11The goal of these sessions was to check participants’ comprehension of the instructions and to make
distributional assumptions for power calculations. Using standard values for significance level (α = 0.05) and
statistical power (β = 0.80), the sample size we settled on would allow us to detect a minimum treatment
effect size of 0.3 standard deviations on average Round 1 individual extraction choices in cross-sectional
analyses. This corresponds to a variation of approximately one unit in individual extraction behavior,
the smallest yet economically relevant variation in the outcome of interest. This sample size would also
allow us to reach a minimum detectable effect size of approximately the same size in the presence of mild
intra-correlation within clusters (experimental sessions). After these pilot sessions, we slightly modified the
experimental protocol and software interface (to increase understanding of the block random termination
rule and to measure beliefs about the behavior of others in a subset of infinite-horizon games). We do not
use data from these pilot sessions in the analyses.
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Table 2: Conditions for Existence of Equilibria with Restoration in Treatments with ρ > 0

High Cost (TR = 75) Low Cost (TR = 25)
Certain Restoration (Extract, Restore): δ ≥ 3/8 (Extract, Restore): δ ≥ 1/8

(ρ = 1) (Conserve, Restore): δ ≥ 1/3 (Conserve, Restore): NO
Uncertain Restoration (Extract, Restore): δ ≥ 3/8 (Extract, Restore): δ ≥ 1/8

(ρ = 0.5) (Conserve, Restore): δ ≥ 1/3 (Conserve, Restore): δ ≥ 1/3

game. This section outlines the critical design choices underlying our approach.

Experimental Manipulations. Our treatment scenarios allow us to investigate how two
critical uncertainties—NETs’ implementation costs and their availability for large-scale de-
ployment—affect the perceived substitutability between mitigation and restoration. Manip-
ulating these features is central to addressing our research question. First, we recognize that
NETs are unlikely to fully reverse the effects of past emissions, either due to their limited
potential or the irreversibility of damages caused by past emissions (Schleussner et al. 2024).
To capture this aspect, we model NETs as probabilistically available in a subset of our
treatments. Additionally, we mirror the complexities arising from the uncertainty surround-
ing the readiness and implementation costs of various technologies and the prospect that
large-scale deployment will require a combination of different solutions by varying NETs’
implementation costs across treatment conditions.

Dynamic Linkage between Periods. One key difference between our framework and
the real-world problem lies in the absence of stock dependency.12 In our game, the dynamic
linkage between periods is given by whether the resource is exhausted or still available, as
determined by past group members’ choices. However, if the resource remains available, each
new period is identical to previous ones, and past resource use does not influence the cost,
likelihood, or effectiveness of NET implementation. This simplification trades realism for
simplicity and it allows us to generate clear, testable predictions, which path dependencies
would complicate. We note that introducing stock dependency would be analogous to in-
creasing the cost of restoration—a dimension we examine through treatment manipulations.
For instance, linking restoration costs to resource extraction levels or allowing past resource
exploitation to reduce agents’ restoration capacity across periods would make restoration im-

12This simplification departs from real-world dynamics in the case of carbon dioxide (CO2) emissions
and removal. However, it may better represent methane (CH4), for which NETs are still in development.
Despite its higher energy absorption and rapidly increasing atmospheric concentration, methane has a much
shorter atmospheric lifetime than CO2 International Energy Agency, 2024, making the lack of stock and
state dependency less critical in the context of methane removal.
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plementation more challenging. Thus, while acknowledging the limitation of our design, we
interpret our results as representing an optimistic scenario, where restoration is unbounded
by stock effects and successful restoration negates the impact of overexploitation.

Sequential Decision Stages. A key feature of our design is the inclusion of two dis-
tinct and sequential decision stages—one for extraction and another for restoration—where
choices are made and aggregated separately, rather than combining both decisions into a
single stage. This structure mirrors the separation of negotiation processes for emissions
reductions and removal, as advocated by both natural and social scientists (McLaren et al.,
2019; Brad and Schneider, 2023; Andreoni et al., 2024). It also captures a crucial, often over-
looked aspect of the real-world problem: large-scale implementation of negative emissions
will fundamentally increase the level of international cooperation required to combat climate
change. Currently, cooperation efforts focus primarily on emissions reduction. However,
the introduction of negative emissions technologies (NETs) adds another layer of complex-
ity, necessitating additional coordination to ensure their effective implementation and use.
While early implementation may be driven by scattered, uncoordinated actions of a few
technological leaders, large-scale deployment will eventually require collective, multi-actor
cooperation due to the significant costs and complex governance involved. This considera-
tion also underpins our design assumption that unilateral conservation and restoration efforts
alone cannot guarantee resource sustainability, emphasizing the need for collective action in
both dimensions.

Deterministic Thresholds. In our setting, resource conservation depends on whether
collective actions meet known and deterministic thresholds: failure to meet these thresholds
results in sudden and extreme changes in resource status, regardless of the magnitude of the
deviation. This approach simplifies the decision environment and avoids the interaction of
multiple uncertainties in treatments where NETs may not always be available. While this
simplification captures a critical aspect of climate change damages, we acknoledge that it
does not reflect the gradual transformations that can occur when thresholds are exceeded
in reality.13 At the same time, we note that recent experimental evidence underscores the
relevance of threshold thinking in climate change, reflecting how many people conceptualize
the problem despite its scientific imprecision (Semken 2024).

Complete Reversibility. Another simplification in our design is the assumption of com-
plete reversibility of adverse outcomes, which diverges from real-world scenarios where ir-

13Barrett and Dannenberg, 2012 show that introducing uncertainty in thresholds within a static public
good game significantly reduces contribution levels compared to deterministic thresholds.
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reversible tipping points pose significant challenges. Introducing incomplete reversibility
would likely reinforce our findings, as it would make restoration even more challenging and
emphasize the importance of proactive mitigation efforts.

Long-Lived Players. We model the problem as an infinitely repeated game played by
the same group of agents, representing the current generation of policymakers who regularly
negotiate and discuss technology implementation, similar to the annual Conference of the
Parties under the United Nations Framework Convention on Climate Change (UNFCCC).
In reality, the mitigation deterrence challenge is heightened by the disproportionate impact
of suboptimal mitigation decisions on future generations. As such, our results on mitigation
cooperation can be interpreted as an upper bound, reflecting a best-case scenario. In a
more realistic setup, where the game is played sequentially by different, not fully altruistic
generations, cooperation outcomes would likely be less favorable.14

Patient Players. In our experiments, we use a high discount factor (δ = 4/5), induc-
ing relatively patient behavior among agents. This choice serves two key purposes. First,
it extends the expected duration of interactions, enabling us to study resource longevity
and long-run outcomes.15 Second, it aligns with our focus on strategic tensions that may
arise from long-term NETs implementation once countries approach net-zero targets through
mitigation efforts. A high discount factor encourages substantial cooperation, fostering con-
servative resource use even without negative emissions. Indeed, our primary objective is
not to assess whether NETs can compensate for insufficient mitigation efforts but to explore
their potential side effects in scenarios where full decarbonization could already be achieved
through mitigation alone. Specifically, we investigate how the introduction and character-
istics of NETs influence strategic behavior, potentially undermining mitigation efforts or
reducing welfare in otherwise cooperative contexts. Furthermore, this parameterization en-
sures comparability with prior experimental studies using dynamic common pool resource
games to examine climate cooperation (Hauser et al., 2014).

14Our Baseline treatment is identical to one of the treatments in ?, and this allows us to gauge the
effect of intra-generational versus inter-generational cooperation. In our Baseline treatment, where the same
group of players interacts repeatedly, around 80% of our experimental communities conserve the common
resource for more than one period (see Figure 3). In the ’Unregulated’ treatment in Hauser et al., 2014,
where a group is composed of new players (or ‘generations’) at every period, around 20% of experimental
communitiesconserve the resource after Round 1 (see Figure 2a in their paper).

15Under the random termination rule, the expected number of periods in a supergame is 1/(1 − δ),
resulting in an average duration of 5 periods when δ = 4/5.
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5 Experimental Results

Results reported in this section refer to the behavior of “experienced” participants, starting
from the 4th supergame onwards, as pre-registered.16 When presenting results about beliefs,
we use data from the 7th supergame, in which beliefs are first elicited. When discussing
results about choices and beliefs, we focus on the first round of a supergame. This is standard
practice for the analysis of experimental data from infinitely repeated games and simplifies
the analysis by i) minimizing the impact of history on behavior, as history may differ across
subjects/groups starting from the second round, and ii) increasing comparability, as the
length of each supergame may differ across subjects/groups due to the combined effect of
their choices and the random termination rule. For the same reasons, we focus on the
first block (rounds 1-5) of a supergame when discussing resource life length and cumulative
earnings results.17

5.1 Extraction and Restoration Choices

In the Baseline condition, in the absence of restoration, participants tend to extract a sus-
tainable amount, allowing the resource to survive, on average, for four periods.18 As a result,
participants’ payoffs are close to the efficient levels that can be achieved through sustained
cooperation, and payoff dispersion is low. Overall, results show that the availability of
restoration technologies neither allows participants to conserve the common resource longer
nor to accrue higher payoffs than in the Baseline.

In the presence of restoration, it is only when the restoration technology is certain and
cheap (T3) that players converge — and consistently stick — to the profitable actions’ pattern
in which the resource is first exhausted due to high extraction levels and then replenished
through restoration technologies (see Figure 2 reporting evidence on Round 1 choices).19

Interestingly, while participants invest the amount needed to make restoration successful
from the beginning, they only learn over time to extract the resource to the full extent
before replenishing it, fully exploiting the strategic substitutability.

When the restoration technology is cheap but uncertain (T2), most players tend to play
16In Appendix C, we show that the results presented in this Section are qualitatively unchanged when we

expand the analyses to the whole sample. We compare subjects’ behavior in early (1 to 3) vs.
late (4-onwards) supergames in Appendix E.

17In Appendix D, we show that results are qualitatively unchanged if we relax these constraints and
include data from all rounds and all supergames.

18Note that with a continuation probability of δ = 0.8 the expected duration of the game is five periods.
19See Figure 9 in Appendix H for descriptive statistics and results of non-parametric tests on overall

Extraction and Restoration choices by experienced subjects in Round 1 (pooling observations from all su-
pergames), and Table 13 in Appendix G for ATEs on individual Extraction and Restoration levels.
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Figure 2: Mean Individual Extraction and Restoration Choices, Round 1

Notes. Whiskers denote 95% confidence intervals. Left panel: Extraction; Right panel: Restoration.

conservatively on extractions, consuming virtually the same amount of units from the com-
mon pool as in the Baseline. However, similarly to what we observe in the companion
treatment with cheap restoration (available with certainty, T3), participants also choose to
invest, on average, the amount needed to make restoration technologies effective despite the
uncertainty about their actual availability.

When restoration technologies are expensive, irrespective of whether their availability is
certain (T5) or uncertain (T4), players tend to play conservatively on extraction choices,
just as in the Baseline, in which no restoration option is available. At the same time, al-
though their conservative extraction conduct rarely makes restorative interventions needed,
participants also tend to engage, on average, in positive restoration efforts.

RESULT 1: The only condition in which restoration technologies are consistently employed,
in combination with exploitative extraction actions, is when they are certain and cheap.

5.1.1 Group and Individual Heterogeneity

To investigate heterogeneity at the group level, we classify each group with the equilibrium
profile that most closely describes their observed aggregate group action (i.e., total extraction
and total restoration) in Round 1. In the Baseline condition, individual extraction choices
exhibit low variability when no restoration option is available. Looking at aggregate group
behavior, we observe that in the majority of cases, action patterns compatible with what
the conservative and most efficient equilibrium “Conserve, Don’t Restore” would prescribe
emerge, and only a minority of all groups exceeds the extraction threshold, exhausting the
resource in the first round of play (see Figure 3).20

20See Figure 10 in Appendix H for further descriptive evidence on the dispersion in Round 1 extraction
and restoration choices.
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When restoration is certain and cheap (T3), both extraction levels and variability in
individual extraction choices are higher. At the same time, relatively little heterogeneity is
observed in restoration choices, whose value fluctuates around the (symmetrical) due level.
As a result, in this treatment, most groups coordinate on extraction and restoration actions
compatible with the most profitable (and efficient) equilibrium “Extract, Restore”.

When restoration is cheap but uncertain (T2), the average number of units extracted
from the resource is not statistically different from the baseline. In contrast, the average
restoration effort mirrors the level reached in the companion treatment with cheap but
certain restoration technologies (T3). However, due to a composition effect driven by the
higher variability in individual extraction choices, aggregate group extraction levels exceed
the threshold more often than in the Baseline.21 Similarly, while the average restoration
effort is high enough to reach the threshold needed at the group level in the majority of
cases, the higher variability in individual restoration choices makes group restoration efforts
sufficient less often than in T3.22 Looking at aggregate group behavior, we observe that
the conservative equilibrium “Conserve, Restore” — in which a limited amount of resource
units is extracted and, simultaneously, efforts needed to make restoration effective are met
— emerges as the most frequent. The other two equilibria “Conserve, Don’t Restore” and
“Extract, Restore” follow with almost equal frequency (see Figure 3), and similarly to what
we observe in the Baseline and T3, only a minority of groups coordinate on the defective
and inefficient equilibrium “Extract, Don’t Restore”.

When restoration technologies are expensive, irrespective of whether their availability is
certain (T5) or uncertain (T4), we observe a slightly higher variability in extraction choices
compared to the Baseline, similar to when cheap but uncertain restoration is available.
At the same time, starkly higher variation in individuals’ restoration investment choices
emerges: while some participants decide not to invest at all, others choose instead to invest
the due amount needed to make costly restoration actions successful. In most cases, such
uncoordinated restoration efforts lead to insufficient investment levels, causing groups to fail
to reach the restoration threshold. As a result, the majority of groups coordinate on the
“Conserve, Don’t Restore” equilibrium, as in the Baseline, and only a minor share of all
groups coordinate (and successfully persist) on extraction and restoration paths compatible
with equilibria in which the resource survival relies on coordinated restoration efforts.

To further investigate heterogeneity in individual choices within and across treatments,
21See Table 13 in Appendix G for ATEs on the probability excessive extraction and sufficient restoration

effort is observed at the group level.
22In addition, as shown in Table 14 in Appendix G, reporting summary statistics on the resource restora-

tion dynamics, the restoration technology proves successful in counteracting resource exhaustion only around
1/3 of the time due to the randomness in the availability of the restoration technology.
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we analyze participants’ behavior in treatments where restoration technologies are avail-
able through a k-means clustering analysis.23 We analyze participants’ behavior in low- vs.
high-cost restoration treatments separately: each observation represents a participant who
is identified with a two-dimensional vector describing her average extraction and restoration
choices in Round 1 across all supergames played from the 4th onwards. Results, shown in
Figure 4, show that participants’ behavior can be parsimoniously classified into three clus-
ters within each cost condition. However, clusters’ classification differs substantially across
the two conditions: while in the low-cost scenarios, most heterogeneity across individuals
arises from differences in average extraction choices, when restoration costs are high, clusters
differ mainly only along the average restoration choice dimension. In low-cost restoration
treatments, the majority of participants can be classified within one of the two clusters
characterized by average extraction and restoration actions compatible with what the two
equilibria “Extract, Restore” and “Conserve, Restore” would prescribe, which are the two
modal equilibria in T2 and T3, respectively, based on aggregate group actions. Only a
minority of participants are classified within a residual cluster characterized by conserva-
tive extraction choices and a generous restoration propensity, which is not predicted by any
of the symmetrical and stationary equilibria analyzed yet could — in principle — identify
participants with strong identity preferences for resource preservation, less sensitive to strate-
gic substitutability. When restoration is expensive, clusters only differ in terms of average
restoration propensity. As in the previous cost scenario, most of the participants can be
classified within one of the two clusters compatible with what the two equilibria “Conserve,
Restore” and “Conserve, Don’t Restore” would prescribe, and only a minor share of partici-
pants are classified within a residual cluster characterized by relatively high but insufficient
restoration efforts, which is not predicted by any of the symmetrical and stationary equilibria
analyzed.

5.2 Resource Life

Thanks to the implementation of the block random termination rule, all players can — in
principle — play for up to five rounds, irrespective of (and before being informed about) the
random realizations of the parameter determining game continuation. Looking at players’

23K-means clustering is a common unsupervised learning technique used to group observations based
on their similarity in a multidimensional space of observable characteristics (see MacQueen 1967, Hartigan
1975, Hastie et al. 2005, and Murphy 2012; for a recent use in experimental economics, see Fréchette et al.
2022). The process involves randomly selecting k points as cluster centers within the observable characteristic
space. Each observation is then linked to its nearest center, and the center positions are iteratively adjusted
to minimize within-cluster variance. This process is repeated 10 times with 10 different random cluster
centers, and the algorithm selects the best result if the final clusters differ. Determining the initial number
of clusters is a necessary step, and we followed the customary practice of using the elbow method.
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Figure 3: Distribution of Group Types Across Treatments, Round 1

Notes. Group types are defined based on aggregate group extraction and restoration actions
in Round 1 of all supergames played from the 4th onwards.: groups are classified with the
equilibrium profile that most closely describes their observed overall group action pattern.
Percentage values reported inside the bars represent the frequency of the types within each
treatment condition (labels are printed only for percentage values above 0.02). EQ1: if
Et =

∑
eit > TE and (if available) Rt =

∑
rit < TR; EQ2: if Et =

∑
eit ≤ TE and (if

available) Rt =
∑

rit < TR; EQ3: if Et =
∑

eit > TE and (if available) Rt =
∑

rit ≥ TR;
EQ4: if Et =

∑
eit ≤ TE and (if available) Rt =

∑
rit ≥ TR.

behavior in the first five rounds of each supergame — Block 1 — we observe that the resource
survives for, on average, approximately four periods.24

The presence of restoration technologies does not improve prospects of resource life length,
compared to the Baseline, not even when restoration technologies are largely employed to
counteract excessively exploitative extraction behaviors, such as in T3 when restoration is
certain and low cost (see Figure 525)

24Due to some minor and unexpected technical issues occurred at the end of a few sessions conducted
during the first week of data collection, we exclude observations from N=6 groups in total from the analysis
on Block 1 behavior: groups 1,3 from session 3 (T2); group 1 from session 4 (T3); groups 1,2,3 from session
5 (T4). During those sessions, a subset of groups experienced a glitch while taking their choices in the
last supergame — at different game stages — preventing them from completing to play. The glitch never
occurred while subjects were making Round 1 choices; hence, no observation is excluded from the analysis
of Round 1 behavior.

25See Appendix G, Table 15 for full regression results. Resource life length is measured as the number of
rounds each group plays out of the first block of five rounds. See Figure 11 in Appendix H for descriptive
statistics and results of non-parametric tests on resource life.
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Figure 4: Cluster Analysis

Notes. Participants are classified into clusters, based on their average extraction and restoration choices
in Round 1 of all supergames played from the 4th onwards. Left Panel: Low-cost restoration treatments,
pooled (T2 and T3); Right panel: High-cost restoration treatments, pooled (T4 and T5).

RESULT 2: On average, the resource survives for about four periods, and introducing
restoration technologies does not improve its life length.

To evaluate the welfare effects of introducing restoration technologies, we primarily look
at cumulative payoffs accrued over the first five rounds of a supergame — Block 1 — which
are affected both by individuals’ (extraction and restoration) actions in each round and by
groups’ ability to maximize the resource lifespan.

Overall, the presence of restoration technologies does not lead to any significant im-
provement in the level of cumulative payoffs, compared to the Baseline (see Figure 626 and
Figure 8). Looking at round payoffs, the only condition in which a positive effect is ob-
served is when restoration is cheap and certain (T3): in all other conditions, the presence of
restoration technologies leads to lower round payoffs compared to the baseline in which no
restoration option is available (see Figure 7).

The availability of restoration technologies also intensifies within-group dispersion in
round and cumulative payoffs (see Figures 7 and 8). The strongest and most sizeable effect
emerges in the presence of certain low-cost restoration technologies (T3), led by sizeable
within-group dispersion in both extraction and restoration choices, with the latter being al-
most always payoff-relevant (due to players’ exploitative actions and technological readiness).

26See Appendix G, Table 15 for full regression results.
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Figure 5: Resource Conservation

Notes: Pr(Conservation): an observation is a group in a round of a supergame; the dependent variable
is a dummy variable equal to one if the group manages to conserve the resource, either by not exceeding
the extraction threshold or by successful restoration; we plot the Logit-RE estimated Average Marginal
Effects, as a result, we do not report an estimate for the baseline treatment (No Restoration). Resource
Life: an observation is a group in a supergame; the dependent variable is a continuous variable measuring
the number of rounds the resource was conserved in; we plot estimated OLS coefficients. The baseline
treatment is T1. Standard errors clustered at the session level.

Although smaller, a significant positive effect on cumulative payoffs’ dispersion also emerges
when restoration technologies are low-cost but uncertain (T2) or certain and high-cost (T5).
In all cases, most of the payoff dispersion observed is driven by the dispersion in extraction
choices, as restoration investments — when possible — do not always lead to payoff-relevant
consequences, and even when this is the case, display lower variability (see Table 3).27, 28

RESULT 3: Restoration technologies do not prove to be payoff-enhancing, not even when
available with certainty and at a low cost; The introduction of restoration technologies also
triggers negative effects on cumulative payoffs’ dispersion within groups, mostly due to a
higher dispersion in players’ cumulative extraction choices.

27We measure dispersion looking at the standard deviation. We replicate the analysis relying on an
alternative measure of dispersion - the Gini index - in Appendix I.

28See Figure 12 in Appendix H) for descriptive evidence on the dispersion in cumulative extraction and
(payoff-relevant) restoration choices in Block 1, and Table 14 in Appendix G for summary statistics on the
resource restoration dynamics.
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Figure 6: Payoffs

Notes: Round Payoff: an observation is a subject in a round of a supergame; the dependent variable is a
continuous variable measuring individual round payoff; we plot GLS-RE estimated coefficients. Cumula-
tive Payoff: an observation is a subject in a supergame; the dependent variable is a continuous variable
measuring individual cumulative payoff accrued over Rounds 1-5; we plot GLS-RE estimated coefficients.
The baseline treatment is T1. Standard errors clustered at the session level.

5.3 Beliefs

Participants tend to hold correct beliefs about their groupmates’ total extraction choices in
the Baseline (see Table 4), correctly approximating that their groupmates’ total extraction
will fluctuate around the level that would enable coordinated conservative action. Almost the
same picture emerges when uncertain and expensive restoration technologies are introduced
(T4). When uncertain but cheap (T2) or certain and expensive (T5) restoration technolo-
gies are available, participants expect their groupmates to extract globally slightly more of
what would be the level ensuring resource conservation, although such slightly pessimistic
beliefs do not match their groupmates’ actual extraction patterns. In stark contrast, when
restoration technologies are certain and cheap (T3), participants do correctly anticipate that
their groupmates’ total extraction will be well above the conservative level.

When asked to guess about their groupmates’ restoration choices (see Table 4), par-
ticipants correctly anticipate that their groupmates will be willing to commit to roughly
sufficient investments when the cost of restoration is low (T2 and T3) but not when the cost
of restoration is high (T4 and T5), when they predict that total investment will largely lag
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Figure 7: Individual Round Payoffs in Block 1 (Rounds 1-5): Means & Box Plots

Notes. Left Panel - Mean values: whiskers at the top of bars denote 95% confidence intervals. Mann-
Whitney-Wilcoxon test statistics on equality of medians (p-values): T2 vs. T1 z-stat=6.341 (0.000); T3 vs.
T1 z-stat=-48.026 (0.000); T4 vs. T1 z-stat=6.342 (0.000); T5 vs. T1 z-stat=10.837 (0.000). Kolgomorov-
Smirnov test statistics on equality of distributions (p-values): T2 vs. T1 D=0.1544 (0.000); T3 vs. T1
D=0.7575 (0.000); T4 vs. T1 D=0.0636 (0.000); T5 vs. T1 D=0.1460 (0.000). Right Panel - Box plots:
the line inside the box denotes the median, while the upper and lower borders of the box indicate the 75th
and 25th percentiles of the distribution, respectively. Whiskers’ ends identify the furthest observations
within one and a half interquartile range of the upper/lower ends of the box. Points marked outside of
the box and whiskers correspond to outside values.

Figure 8: Cumulative Payoffs in Block 1 (Rounds 1-5): Means & Box Plots

Notes. Left Panel - Mean values: whiskers denote 95% confidence intervals. Mann-Whitney-Wilcoxon
test statistics on equality of medians (p-values): T2 vs. T1 z-stat=9.232 (0.000); T3 vs. T1 z-stat=-
9.400 (0.000); T4 vs. T1 z-stat=9.306 (0.000); T5 vs. T1 z-stat=5.002 (0.000). Kolgomorov-Smirnov
test statistics on equality of distributions (p-values): T2 vs. T1 D=0.2731 (0.000); T3 vs. T1 D=0.4757
(0.000); T4 vs. T1 D=0.2214 (0.000); T5 vs. T1 D=0.2107 (0.000). Right Panel - Box plots: the line
inside the box denotes the median, while the upper and lower borders of the box indicate the 75th and
25th percentiles of the distribution, respectively. Whiskers’ ends identify the furthest observations within
one and a half interquartile range of the upper/lower ends of the box. Points marked outside of the box
and whiskers correspond to outside values.

behind the level needed, irrespective of whether the availability of the technology is certain
or uncertain. Net of differences in predicted restoration effort levels, across all conditions,
participants tend to hold slightly optimistic beliefs about their group mates’ willingness to
invest in restoration technologies.
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Table 3: Analysis of Payoffs Dispersion (Block 1), Statistical Tests for ATEs

Round Cumulative Cumulative Cumulative Cumulative
Payoff Payoff Extraction RestorationP R Payoff

SD SD SD SD SD

T2 - Uncertain / Low 1.649** 4.117*** 3.651** -4.095***
(0.665) (1.470) (1.451) (0.752)

T3 - Certain / Low 2.212*** 8.361*** 6.285***
(0.430) (1.747) (1.459)

T4 - Uncertain / High 1.307 1.798 0.475 -3.661***
(0.902) (1.062) (0.782) (0.914)

T5 - Certain / High 1.674*** 4.873*** 2.191** -1.593*
(0.443) (0.812) (0.921) (0.899)

Cum. Extraction SD 0.884***
(0.028)

Cum. RestorationP R SD 0.631***
(0.101)

Constant 1.081*** 2.624*** 2.624*** 5.527*** 0.311
(0.298) (0.564) (0.564) (0.681) (0.277)

Observations 2867 750 750 510 510
Notes. SD: within-group standard deviation. Column 1 reports GLS-RE Estimates: an observation is
a group in a round of a supergame; Columns 2-5 report OLS Estimates: an observation is a group in a
supergame. In each column, the dependent variable captures dispersion, measured through within-group
standard deviation, in: (1) round payoffs in Block 1; (2,5) cumulative payoffs in Block 1; (3) cumulative
extraction choices in Block 1; (4) cumulative payoff-relevant restoration choices in Block 1. Restoration
choices are payoff-relevant only if restoration is needed because the extraction threshold is exceeded, and
available – and otherwise valued as zero. The baseline treatment in columns 1, 2 and 3 is T1 - Baseline.
The baseline treatment in column 4 is T3 - Certain / Low. Standard errors clustered at the session level.

RESULT 4: Participants form correct beliefs about their groupmates’ extraction choices in
most treatments, correctly anticipating exploitative behavior will steadily emerge only when
restoration is cheap and certain; instead, they tend to slightly over-estimate others’ willing-
ness to invest in restoration in all conditions despite correctly capturing level effects across
different cost dimensions.
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Table 4: Beliefs about Others’ Choices (Round 1), Statistical Tests for ATEs

Others’ Extraction Others’ Restoration
Belief Bias Belief Bias

T2 - Uncertain / Low 3.234** 2.973** -2.557* 0.276
(1.260) (1.238) (1.503) (0.765)

T3 - Certain / Low 32.586*** -1.847*
(1.839) (1.006)

T4 - Uncertain / High 2.426* 1.009 16.648*** 0.962
(1.341) (0.835) (3.843) (1.478)

T5 - Certain / High 1.424*** 2.893*** 14.840*** 1.005
(0.501) (0.901) (1.923) (1.554)

Constant 40.446*** 0.863 24.863*** 2.358***
(0.164) (0.655) (0.835) (0.640)

Observations 1980 1980 1140 1140
Notes. GLS-RE Estimates: an observation is a subject in a round of a supergame. In each column, the
dependent variable is a continuous variable measuring: (1) beliefs on the sum of other group members’
total extraction choices; (2) the distance between beliefs and actual levels for other group members’ total
extraction choices; (3) beliefs on the sum of other group members’ restoration choices; (4) the distance
between beliefs and actual levels for other group members’ restoration choices. The baseline treatment
in columns 1 and 2 is T1 - Baseline. The baseline treatment in columns 3 and 4 is T3 - Certain / Low.
Standard errors clustered at the session level.

6 Conclusion

Our study provides crucial insights into the role of Negative Emission Technologies (NETs)
as potential deterrents to mitigation efforts. Indeed, in the most optimistic scenario where
these technologies are a certain and cheap option, our experimental communities coordi-
nate on the equilibrium where mitigation is entirely substituted by restoration. Moreover,
short-term mitigation decisions are influenced in all scenarios where these technologies are
available. The treatments where removal technologies are characterized by high costs and
uncertainty (a far more likely scenario outside of the laboratory) result in adverse short-term
effects. These include decreased payoffs, heightened inequality, and increased coordination
challenges, amplifying especially the impact of defectors and free riders. Even under the most
optimistic scenario, carbon removal technologies prove ineffective in prolonging the lifespan
of the resource or increasing the welfare of our experimental communities and contribute to
greater inequality in earnings, primarily driven by greater dispersion in extraction choices.

Our findings raise concerns about the risks of portraying Negative Emission Technologies
as fail-safe and low-cost mechanisms, as this would shift the focus away from the required
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short-term mitigation. More generally, our results underscore the pivotal role of how informa-
tion about the characteristics of these technologies will be conveyed. Scientists, policymakers,
and the media must navigate the narrative surrounding the affordability and reliability of
restoration technologies with care.

In conclusion, our study sheds light on the complexities surrounding integrating restora-
tion technologies in the context of climate change negotiations. Recognizing the limited
positive impact on resource longevity and earnings and the critical influence of cost con-
siderations and acknowledging the possibility of irreversible climate change is essential for
formulating effective policies and communication strategies. As the global community strives
for sustainable solutions, these findings contribute valuable insights to inform future decision-
making and action in pursuing a resilient and climate-conscious society.
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Gächter, Simon, Friederike Mengel, Elias Tsakas, and Alexander Vostroknutov (2017),

“Growth and Inequality in Public Good Provision.” Journal of Public Economics, 150,

1–13.
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Appendix

A Equilibrium Analysis

The following propositions characterize the conditions for existence of all symmetric and
stationary SPNEs of the restorable common pool resource game described in Section 2.

Proposition 1 (Extract, Don’t Restore) An equilibrium of the game where, in each pe-
riod, e⋆

i = K
n

and r⋆
i = 0 exists for any δ ∈ [0, 1]. In this equilibrium, the resource is exhausted

in a single period, and the value of the game is V EQ
1 = W +K

n
.

Proposition 2 (Conserve, Don’t Restore) An equilibrium of the game where, in each
period, e⋆

i = TE

n
and r⋆

i = 0 exists if and only if δ ≥ K−TE

W +K
. In this equilibrium, the resource

is never exhausted, and the value of the game is V EQ
2 = W +TE

n(1−δ) .

Proposition 3 (Extract, Restore) Assume ρ > 0. An equilibrium of the game where,
in each period, e⋆

i = K
n

and r⋆
i = TR

n
exists if and only if δ > TR

W +K
. In this equilibrium,

the resource is exhausted when the game does not reach the Restoration Phase in a period.
Thus, at the beginning of every period, the expected number of periods until the resource is
exhausted equals 1/(1 − ρ). The value of the game is V EQ

3 = W +K−ρTR

(1−δρ)n .

Proposition 4 (Conserve, Restore with Uncertain Restoration Technology) Assume
ρ ∈ (0, 1). An equilibrium of the game where, in each period, e⋆

i = TE

n
and r⋆

i = TR

n
exists

if and only if δ ≥ max
{

K−ρTR−TE

W +K−ρ(W +TE+TR) ,
TR

W +TE+TR

}
. In this equilibrium, the resource is

never exhausted, and the value of the game is V EQ
4 = V EQ

2 = W +TE

n(1−δ) .

Proposition 5 (Conserve, Restore with Certain Restoration Technology) Assume
ρ = 1. An equilibrium of the game where, in each period, e⋆

i = TE

n
and r⋆

i = TR

n
exists if and

only if TR ≥ K − TE and δ ≥ TR

W +TE+TR
. In this equilibrium, the resource is never exhausted,

and the value of the game is V EQ
5 = V EQ

2 = W +TE

n(1−δ) .
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B Proofs

Proof of Proposition 1

There is no profitable deviation in either phase because, by Assumptions 1 and 2, a player
cannot unilaterally avoid the transition to the Restoration Phase when everybody else ex-
tracts the largest feasible amount (in the Extraction Phase) and a player cannot unilaterally
prevent resource depletion when nobody else makes any restoration effort (in the Restoration
Phase).

Proof of Proposition 2

In the Extraction Phase, there is no profitable deviation if and only if:

V EQ = W + TE

n(1 − δ) ≥ W + K

n

W + TE ≥ (W + K)(1 − δ)

TE ≥ K − δ(W + K)

δ ≥ K − TE

W + K

In the Restoration Phase, there is no profitable deviation because, by Assumptions 2, a
player cannot unilaterally avoid exhaustion when nobody else makes any restoration effort.

Proof of Proposition 3

In the Extraction Phase, there is no profitable deviation because, by Assumptions 1, a
player cannot unilaterally avoid the transition to the Restoration Phase when everybody
else extracts the largest feasible amount. In the Restoration Phase, there is no profitable
deviation if and only if:

−TR

n
+ δV EQ ≥ 0

δV EQ ≥ TR

n

Since the continuation value of the game under equilibrium strategies is equal to V EQ =
(W +K)

n
− ρTR

n
+ ρδV EQ, we have V EQ = (W +K)−ρTR

(1−δρ)n and the condition above becomes
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δ
(W + K) − ρTR

(1 − δρ)n ≥ TR

n

δ(W + K − ρTR) ≥ TR(1 − δρ)

δ(W + K) ≥ TR

δ ≥ TR

(W + K)

Proof of Propositions 4 and 5

In the Extraction Phase, there is no profitable deviation if and only if:

V EQ ≥ W + K

n
− ρ

TR

n
+ ρδV EQ

(1 − ρδ)V EQ ≥ W + K

n
− ρ

TR

n

Since the continuation value of the game under equilibrium strategies is given by V EQ =
W +TE

n(1−δ) , the condition above becomes

(1 − δρ) W + TE

n(1 − δ) ≥ W + K

n
− ρ

TR

n

1 − δρ

1 − δ
≥ W + K − ρTR

W + TE

When ρ = 1, the condition above becomes TE ≥ K − TR.
When ρ ∈ (0, 1), the condition above becomes:

(1 − δρ)(W + TE) − (W + K − ρTR)(1 − δ)
(1 − δ)(W + TE) ≥ 0

Since the denominator of the LHS is always positive, this condition reduces to checking
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whether the numerator of the LHS is positive, that is,

(1 − δρ)(W + TE) − (W + K − ρTR)(1 − δ) ≥ 0

W + TE − δρ(W + TE) − W − K + ρTR + δ(W + K − ρTR) ≥ 0

−δρ(W + TE) + δ(W + K − ρTR) ≥ K − ρTR − TE

δ(W + K − ρ(W + TE + TR)) ≥ K − ρTR − TE

δ ≥ K − ρTR − TE

W + K − ρ(W + TE + TR)

Since the RHS is strictly less than 1, there exists a value of δ ∈ [0, 1] such that this holds.
Thus, when ρ ∈ (0, 1), the condition for no profitable deviation in the Extraction Phase
becomes δ ≥ K−ρTR−TE

W +K−ρ(W +TE+TR) .
In the Restoration Phase, there is no profitable deviation if and only if:

−TR

n
+ δV EQ ≥ 0

−TR

n
+ δ

W + TE

n(1 − δ) ≥ 0

δ ≥ TR

W + TE + TR

Since the RHS is strictly less than 1, there exists a value of δ ∈ [0, 1] such that this holds.
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C Robustness Check: All Supergames

As for the analyses reported in the main text, due to some minor and unexpected technical
issues, we exclude N=6 groups from the analysis on Block 1 behavior: groups 1,3 from session
3 (T2); group 1 from session 4 (T3); groups 1,2,3 from session 5 (T4).

Table 5: Resource Life & Payoffs (Block 1), Statistical Tests for ATEs

Pr(Resource Resource Life Round Cumulative
Conserved) Length Payoff Payoff

Group Individual

T2 - Uncertain / Low -0.063 -0.486 -0.529*** -15.493*
(0.051) (0.312) (0.143) (9.266)

T3 - Certain / Low 0.036 0.192 1.380*** 12.841
(0.049) (0.297) (0.273) (8.755)

T4 - Uncertain / High -0.055 -0.422 -0.736*** -13.282
(0.071) (0.435) (0.156) (12.524)

T5 - Certain / High -0.025 -0.067 -1.516*** -6.322
(0.046) (0.286) (0.188) (8.837)

Constant 0.851*** 3.939*** 29.900*** 116.460***
(0.046) (0.263) (0.084) (7.906)

Observations 4221 1110 21105 5550
R2-adj 0.019
R2-overall 0.060 0.038
σu 1.253 1.811 15.710
σe 3.236 46.996
ρ 0.323 0.238 0.101

Notes. Column 1 reports Average Marginal Effects for the Logit-RE model: an observation is a
group in a round of a supergame; Column 2 reports OLS Estimates: an observation is a group in
a supergame; Column 3 reports GLS-RE Estimates: an observation is a subject in a round of a
supergame; Column 4 reports GLS-RE Estimates: an observation is a subject in a supergame. In
each column, the dependent variable is: (1) a dummy variable equal to one if the group manages to
conserve the resource, either by not exceeding the extractions limit or by implementing successful
restoration actions in each round of Block 1 actually played; (2) a continuous variable measuring
resource life length, defined as the number of rounds actually played by each group out of the first
5; (3) a continuous variable measuring individual round payoff, in each round of Block 1 actually
played; (4) a continuous variable measuring individual cumulative payoff accrued over all rounds
actually played in Block 1. The baseline treatment is T1 - Baseline. Results are based on (round
or cumulative) Block 1 evidence in all supergames. Standard errors clustered at the session level.
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Table 6: Analysis of Payoffs Dispersion (Block 1), Statistical Tests for ATEs

Round Cumulative Cum. Cum. Cum.
Payoff Payoff Extraction RestorationP R Payoff

SD SD SD SD

T2 - Uncertain / Low 1.644*** 3.942*** 3.484*** -4.075***
(0.576) (1.250) (1.223) (0.721)

T3 - Certain / Low 2.063*** 8.232*** 6.207***
(0.405) (1.305) (1.080)

T4 - Uncertain / High 1.070* 1.648** 0.520 -3.643***
(0.636) (0.782) (0.680) (0.758)

T5 - Certain / High 1.630*** 4.306*** 1.928** -1.575**
(0.365) (0.757) (0.882) (0.741)

Cum. Extraction SD 0.888***
(0.024)

Cum. RestorationP R SD 0.593***
(0.081)

Constant 1.239*** 3.173*** 3.173*** 5.373*** 0.396
(0.289) (0.568) (0.568) (0.661) (0.253)

Observations 4221 1110 1110 798 798
R2-adj (overall) (0.103) 0.181 0.144 0.165 0.896

Notes. SD: within-group standard deviation. Column 1 reports GLS-RE Estimates: an observation is
a group in a round of a supergame; Columns 2-5 report OLS Estimates: an observation is a group in a
supergame. In each column, the dependent variable captures dispersion, measured through within-group
standard deviation, in: (1) round payoffs in Block 1; (2,5) cumulative payoffs in Block 1; (3) cumulative
extraction choices in Block 1; (4) cumulative payoff-relevant restoration choices in Block 1. Restoration
choices are payoff-relevant only if restoration is needed because the extraction threshold is exceeded, and
available – and otherwise valued as zero. The baseline treatment in columns 1, 2 and 3 is T1 - Baseline.
The baseline treatment in column 4 is T3 - Certain / Low. Results are based on cumulative Block 1
evidence from all supergames. Standard errors clustered at the session level.
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D Robustness Check: All Rounds & All Supergames

As for the analyses reported in the main text, due to some minor and unexpected technical
issues, we exclude N = 8 groups from the analysis on Block 1 behavior: groups 1,3 from
session 3 (T2); group 1 from session 4 (T3); groups 1,2,3 from session 5 (T4); and groups 1,4
from session 1 (T1), who experienced the glitch while playing rounds belonging to Block 2.

Table 7: Resource Life & Payoffs (All Rounds), Statistical Tests for ATEs

Pr(Resource Resource Life Round Cumulative
Conserved) Length Payoff Payoff

Group Individual

T2 - Uncertain / Low -0.057 -0.597 -0.537*** -19.520
(0.053) (0.535) (0.146) (16.109)

T3 - Certain / Low 0.033 0.270 1.588*** 17.501
(0.048) (0.551) (0.296) (16.634)

T4 - Uncertain / High -0.043 -0.404 -0.709*** -13.311
(0.069) (0.641) (0.182) (19.023)

T5 - Certain / High -0.021 -0.164 -1.487*** -9.632
(0.046) (0.479) (0.177) (14.739)

Constant 0.849*** 4.648*** 29.937*** 137.971***
(0.045) (0.420) (0.091) (12.946)

Observations 4990 1108 24950 5540
R2-adj 0.005
R2-overall 0.067 0.016
σu 1.187 1.816 23.269
σe 3.150 91.161
ρ 0.300 0.249 0.061

Notes. Column 1 reports Average Marginal Effects for the Logit-RE model: an observation
is a group in a round of a supergame; Column 2 reports OLS Estimates: an observation is a
group in a supergame; Column 3 reports GLS-RE Estimates: an observation is a subject in a
round of a supergame; Column 4 reports GLS-RE Estimates: an observation is a subject in a
supergame. In each column, the dependent variable is: (1) a dummy variable equal to one if
the group manages to conserve the resource, either by not exceeding the extractions limit or
by implementing successful restoration actions in each round played; (2) a continuous variable
measuring resource life length, defined as the number of rounds actually played by each group in a
supergame; (3) a continuous variable measuring individual round payoff, in each round played; (4)
a continuous variable measuring individual cumulative payoff accrued over all rounds played in a
supergame. The baseline treatment is T1 - Baseline. Results are based on (round or cumulative)
evidence over all rounds played of all supergames. Standard errors clustered at the session level.
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Table 8: Analysis of Payoffs Dispersion (All Rounds), Statistical Tests for ATEs

Round Cumulative Cum. Cum. Cum.
Payoff Payoff Extraction RestorationP R Payoff

SD SD SD SD

T2 - Uncertain / Low 1.625*** 4.249*** 3.709*** -4.383***
(0.574) (1.252) (1.220) (0.865)

T3 - Certain / Low 1.975*** 8.814*** 6.509***
(0.409) (1.641) (1.419)

T4 - Uncertain / High 1.055* 1.594** 0.376 -4.002***
(0.639) (0.755) (0.664) (0.901)

T5 - Certain / High 1.649*** 4.635*** 2.078* -1.657*
(0.364) (0.843) (1.032) (0.877)

Cum. Extraction SD 0.909***
(0.015)

Cum. RestorationP R SD 0.601***
(0.066)

Constant 1.264*** 3.579*** 3.579*** 5.833*** 0.284*
(0.293) (0.543) (0.543) (0.819) (0.139)

Observations 4990 1108 1108 798 798
R2-adj (overall) (0.091) 0.148 0.110 0.174 0.920

Notes. SD: within-group standard deviation. Column 1 reports GLS-RE Estimates: an observation is
a group in a round of a supergame; Columns 2-5 report OLS Estimates: an observation is a group in a
supergame. In each column, the dependent variable captures dispersion, measured through within-group
standard deviation, in: (1) round payoffs; (2,5) cumulative payoffs; (3) cumulative extraction choices; (4)
cumulative payoff-relevant restoration choices. Restoration choices are payoff-relevant only if restoration
is needed because the extraction threshold is exceeded, and available – and otherwise valued as zero.
The baseline treatment in columns 1, 2 and 3 is T1 - Baseline. The baseline treatment in column 4 is
T3 - Certain / Low. Results are based on (round or cumulative) evidence over all rounds played of all
supergames. Standard errors clustered at the session level.
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E Experience Effects

Table 9: Extraction & Restoration Choices, Round 1: ATEs in Early vs. Late Supergames

Extraction Restoration
Late: 4+ Late: 4-6 Late: 4+ Late: 4-6

T2 - Uncertain / Low 0.364 0.364 -0.161 -0.161
(0.288) (0.288) (0.319) (0.319)

T3 - Certain / Low 1.550*** 1.550***
(0.459) (0.459)

T4 - Uncertain / High 0.039 0.039 5.128*** 5.128***
(0.360) (0.361) (0.714) (0.714)

T5 - Certain / High 0.053 0.053 4.286*** 4.286***
(0.283) (0.283) (0.685) (0.685)

ILAT E 0.621*** 0.522** 0.099 0.219
(0.217) (0.217) (0.183) (0.182)

T2 ·ILAT E -0.137 0.069 -0.433 -0.203
(0.316) (0.371) (0.276) (0.265)

T3 ·ILAT E 6.039*** 5.492***
(0.538) (0.551)

T4 ·ILAT E 0.154 0.072 -1.064** -0.817**
(0.278) (0.262) (0.430) (0.326)

T5 ·ILAT E -0.312 -0.203 -0.831* -0.750*
(0.306) (0.303) (0.460) (0.407)

Constant 9.242*** 9.242*** 5.728*** 5.728***
(0.214) (0.214) (0.244) (0.244)

Observations 5580 3600 4020 2880
R2-overall 0.376 0.309 0.141 0.150
σu 1.923 1.975 4.149 4.141
σe 2.381 2.582 3.482 3.428
ρ 0.395 0.369 0.587 0.593

Notes. GLS-RE estimates: an observation is a subject in a supergame. In each column, the
dependent variable is a continuous variable measuring individual extraction (1-2) and restoration
(3-4) choices. The baseline treatment in columns 1 and 2 is T1 - Baseline. The baseline treatment
in columns 3 and 4 is T3 - Certain / Low. ILAT E is a dummy variable equal to one for supergames
4+. Results are based on Round 1 behavior in all supergames (columns 1 and 3) and in supergames
4-6 only (columns 2 and 4). Standard errors clustered at the session level.
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F Effect of Eliciting Beliefs on Behavior

Table 10: Before vs. After Beliefs’ Elicitation, Round 1 Choices, Statistical Tests for ATEs

Extraction Restoration
1-6 vs. 7+ 5-6 vs. 7-8 1-6 vs. 7+ 5-6 vs. 7-8

T2 - Uncertain / Low 0.399* 0.429 -0.262 -0.263
(0.206) (0.346) (0.286) (0.342)

T3 - Certain / Low 4.296*** 7.721***
(0.566) (0.671)

T4 - Uncertain / High 0.075 0.062 4.719*** 4.121***
(0.313) (0.327) (0.767) (0.897)

T5 - Certain / High -0.049 -0.138 3.911*** 3.392***
(0.160) (0.176) (0.678) (0.729)

IAF T ER 0.405** -0.025 -0.244** -0.306***
(0.196) (0.131) (0.120) (0.118)

T2 ·IAF T ER -0.334 -0.309 -0.487* -0.328
(0.219) (0.271) (0.257) (0.224)

T3 ·IAF T ER 4.497*** 0.853**
(0.640) (0.427)

T4 ·IAF T ER 0.286 0.217 -0.844* 0.023
(0.274) (0.162) (0.445) (0.293)

T5 ·IAF T ER -0.270 -0.148 -0.517 0.342
(0.233) (0.156) (0.667) (0.482)

Constant 9.503*** 9.833*** 5.837*** 5.938***
(0.129) (0.137) (0.159) (0.093)

Observations 5580 2240 4020 1760
R2-overall 0.299 0.546 0.142 0.117
σu 1.886 2.367 4.149 4.822
σe 2.631 1.707 3.477 2.867
ρ 0.339 0.658 0.587 0.739

Notes. GLS-RE Estimates: an observation is a subject in a round. In each column, the dependent
variable is: (1)-(2) a continuous variable measuring individual extraction choices in Round 1; (3)-(4) a
continuous variable measuring individual restoration choices in Round 1; IAF T ER is a dummy variable
equal to one if the observation is collected starting from the 7th supergame onwards. The baseline
treatment in columns 1 and 2 is T1 - Baseline. The baseline treatment in columns 3 and 4 is T3 -
Certain / Low. Standard errors clustered at the session level.
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G Additional Tables

Table 11: Number of Supergames in Session, Summary Statistics

Observations Mean Std. Dev. Min Max
T1 - Baseline 6 13 2.97 10 18
T2 - Uncertain / Low 6 9 1.67 6 11
T3 - Certain / Low 6 7.67 1.21 7 10
T4 - Uncertain / High 6 8.67 0.82 8 10
T5 - Certain / High 6 8.17 1.17 7 10

Notes. An observation is a session: each session counts 20 participants and includes 60 minutes of

play. The number of supergames played within a session statistically differs from the T1 - Baseline

in all treatments with Restoration. Non-parametric Wilcoxon (Mann–Whitney) test statistics (exact

p-values): T1 vs. T2 z-stat = 2.441 (0.0130); T1 vs. T3 z-stat = 2.797 (0.0065); T1 vs. T4 z-stat =

2.771 (0.0065); T1 vs. T5 z-stat = 2.756 (0.0065). Non-parametric Kruskal-Wallis test: including all

treatments χ2 = 15.026 (0.0046); excluding T1 - Baseline χ2 = 4.337 (0.2273).
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Table 12: Share of Correctly Answered Comprehension Questions, Summary Statistics

a. First attempt
Observations Mean Std. Dev. Min Max

T1 - Baseline 120 2.54 0.62 1 3
T2 - Uncertain / Low 120 2.02 0.88 0 3
T3 - Certain / Low 120 2.28 0.83 0 3
T4 - Uncertain / High 120 2.11 0.85 0 3
T5 - Certain / High 120 2.3 0.84 0 3

b. Second attempt
Observations Mean Std. Dev. Min Max

T1 - Baseline 47 2.79 0.46 1 3
T2 - Uncertain / Low 80 2.6 0.57 1 3
T3 - Certain / Low 62 2.69 0.56 1 3
T4 - Uncertain / High 73 2.58 0.58 1 3
T5 - Certain / High 58 2.67 0.54 1 3

Notes. An observation is a subject. In all treatment conditions, subjects must answer three com-

prehension questions: the questions are always the same, and the correct answers to the latter are

treatment-specific. Subjects have two attempts to answer the questions before moving to the game

stage: Panel a shows the share of correctly answered questions after subjects’ first attempt; Panel b

shows the share of correctly answered questions for subjects who engage in the second attempt, after

failing to answer all questions correctly in the first attempt. The share of correctly answered ques-

tions is statistically different from the Baseline in all treatments with Restoration at the end of the

first attempt. In all treatments with restoration, the share of correctly answered questions is lower,

and this difference is stronger if the availability of restoration technologies is uncertain (irrespective of

restoration costs). Non-parametric Kruskal-Wallis equality-of-populations rank test statistic (p-value):

28.113 (0.001). Mann-Whitney-Wilcoxon test statistics on equality of medians (p-values): T1 vs. T2

z-stat = 4.891 (0.000); T1 vs. T3 z-stat = 2.330 (0.0198); T1 vs. T4 z-stat = 4.092 (0.000); T1 vs.

T5 z-stat = 2.050 (0.0404). The share of correctly answered questions for subjects who engage in the

second attempt is not statistically different across treatments. Non-parametric Kruskal-Wallis equality-

of-populations rank test statistic (p-value): 6.438 (0.1688).
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Table 13: Extraction & Restoration Choices (Round 1), Statistical Tests for ATEs

Extraction Pr(Excessive Restoration Pr(Sufficient
Choice Group Extraction) Choice Group Restoration)

T2 - Uncertain / Low 0.209 0.200** -0.564* -0.226**
(0.185) (0.082) (0.305) (0.091)

T3 - Certain / Low 7.544*** 0.807***
(0.612) (0.054)

T4 - Uncertain / High 0.194 0.112 4.088*** -0.757***
(0.383) (0.123) (0.953) (0.057)

T5 - Certain / High -0.274** -0.030 3.463*** -0.790***
(0.138) (0.063) (0.653) (0.030)

Constant 9.857*** 0.175*** 5.828*** 0.830***
(0.098) (0.051) (0.079) (0.026)

Observations 3780 756 2580 516
Notes. Columns 1 and 3 report GLS-RE estimates: an observation is a subject in a supergame.

Columns 2 and 4 report Average Marginal Effects for Logit models: an observation is a group

in a supergame. In each column, the dependent variable is: (1) a continuous variable measuring

individual extraction choice; (2) a dummy equal to one if the group extraction threshold is ex-

ceeded; (3) a continuous variable measuring individual restoration choice; (4) a dummy equal to

one if the group effort is sufficient for restoration irrespective of whether restoration is needed and

available. The baseline treatment in columns 1 and 2 is T1. The baseline treatment in columns

3 and 4 is T3. Standard errors clustered at the session level.
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Table 14: Summary Statistics on Resource Restoration, Round 1

Restoration Effort Sufficient Restoration Successful∑
ri ≥ TR

∑
ri ≥ TR & Restoration available

Overall ELE=0 ELE=1

T2 - Uncertain / Low % 60.42 63.3 55.56 37
N 144 90 54 54

T3 - Certain / Low % 83 100 82.73 82.73
N 112 2 110 110

T4 - Uncertain / High % 7.35 7 7.69 5
N 136 97 39 39

T5 - Certain / High % 4 3.77 5.55 5.55
N 124 106 18 18

Notes. An observation is a group in the first round of a supergame. The restoration effort is sufficient
if group restoration efforts are equal to or greater than the treatment-specific threshold (

∑
ri ≥ TR).

ELE=0 is the subsample of observations in which the extraction limit is not exceeded; hence, there is no
need for restoration (because total group extraction was below the threshold,

∑
ei ≤ TE), while ELE=1 is

the subsample of observations in which extraction limit is exceeded in the first stage, hence restoration is
needed (because group extraction was above the threshold). Restoration is successful if restoration efforts
meet the threshold when needed (ELE=1) and the technology is available.
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Table 15: Resource Life & Payoffs (Block 1), Statistical Tests for ATEs

Pr(Resource Resource Life Round Cumulative
Conserved) Length Payoff Payoff

T2 - Uncertain / Low -0.070 -0.545 -0.504*** -17.021*
(0.054) (0.338) (0.135) (9.918)

T3 - Certain / Low -0.005 -0.044 2.865*** 11.844
(0.051) (0.306) (0.374) (9.115)

T4 - Uncertain / High -0.068 -0.558 -0.728*** -16.276
(0.080) (0.488) (0.196) (14.104)

T5 - Certain / High -0.026 -0.049 -1.365*** -4.289
(0.048) (0.329) (0.245) (10.292)

Constant 0.866*** 4.017*** 29.996*** 118.942***
(0.044) (0.258) (0.079) (7.900)

Observations 2867 750 14335 3750
Notes. Column 1 reports Average Marginal Effects for the Logit-RE model: an observation is a
group in a round of a supergame; Column 2 reports OLS Estimates: an observation is a group
in a supergame; Column 3 reports GLS-RE Estimates: observation is a subject in a round of a
supergame; Column 4 reports GLS-RE Estimates: observation is a subject in a supergame. In
each column, the dependent variable is: (1) a dummy variable equal to one if the group manages to
conserve the resource, either by not exceeding the extraction threshold or by successful restoration;
(2) a continuous variable measuring the number of rounds the resource was conserved in; (3)
a continuous variable measuring individual round payoff; (4) a continuous variable measuring
individual cumulative payoff accrued over Rounds 1-5. The baseline treatment is T1. Standard
errors clustered at the session level.
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H Additional Figures

Figure 9: Mean Individual Extraction and Restoration Choices, Round 1

Notes. Mean values: whiskers denote 95% confidence intervals. Left panel: Extraction choices: Mann-
Whitney-Wilcoxon test statistics on equality of medians (p-values): T1 vs. T2 z-stat=−1.358 (0.175);
T1 vs. T3 z-stat=−27.675 (0.000); T1 vs. T4 z-stat= 1.059 (0.290); T1 vs. T5 z-stat= 1.589 (0.112).
Kolgomorov-Smirnov test statistics on equality of distributions (p-values): T1 vs. T2 D=0.0892 (0.002);
T1 vs. T3 D=0.7614 (0.000); T1 vs. T4 D=0.0451(0.339); T1 vs. T5 D=0.0549 (0.169). Right panel:
Restoration choices: Mann-Whitney-Wilcoxon test statistics on equality of medians (p-values): T3 vs. T2
z-stat=−6.404 (0.000); T3 vs. T4 z-stat=−10.299 (0.000); T3 vs. T5 z-stat=−7.493 (0.000). Kolgomorov-
Smirnov test statistics on equality of distributions (p-values): T3 vs. T2 D=0.1837 (0.000); T3 vs. T4
D=0.5387 (0.000); T3 vs. T5 D=0.5212 (0.000).

Figure 10: Box Plots of Individual Extraction and Restoration Choices, Round 1

Notes. Box plots: the line inside the box denotes the median, while the upper and lower borders of the
box indicate the 75th and 25th percentiles of the distribution, respectively. Whiskers’ ends identify the
furthest observations within one and a half interquartile range of the upper/lower ends of the box. Points
marked outside of the box and whiskers correspond to outside values. Left panel: Extraction choices; Right
panel: Restoration choices.
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Figure 11: Resource Life Length: Block 1 (Rounds 1-5)

Notes. Mean values: whiskers denote 95% confidence intervals. Mann-Whitney-Wilcoxon test statistics
on equality of medians (p-values): T1 vs. T2 z-stat=3.506 (0.0005); T1 vs. T3 z-stat=0.712 (0.4765); T1
vs. T4 z-stat=3.278 (0.0010); T1 vs. T5 z-stat=0.766 (0.4437). Kolgomorov-Smirnov test statistics on
equality of distributions (p-values): T1 vs. T2 D=0.2029 (0.001); T1 vs. T3 D=0.0562 (0.970); T1 vs. T4
D=0.1770 (0.009); T1 vs. T5 D=0.0668 (0.859).

Figure 12: Box Plots of Cumulative Extraction and Restoration Choices in Block 1

Notes. Box plots: the line inside the box denotes the median, while the upper and lower borders of

the box indicate the 75th and 25th percentiles of the distribution, respectively. Whiskers’ ends identify

the furthest observations within one and a half interquartile range of the upper/lower ends of the box.

Points marked outside of the box and whiskers correspond to outside values. Left panel: Cumulative

individual extractions in Rounds 1-5. Right panel: Cumulative payoff-relevant individual restoration

actions in Block 1. Restoration actions are payoff-relevant if the extraction limit is exceeded and

restoration technologies are available.
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I Robustness Check: Inequality using Gini Indicators

Table 16: Analysis of Payoffs Dispersion (Block 1), Statistical Tests for ATEs

Round Cumulative Cum. Cum. Cum.
Payoff Payoff Extraction RestorationP R Payoff
Gini Gini Gini Gini Gini

T2 - Uncertain / Low 0.027*** 0.024*** 0.053** -0.017
(0.010) (0.009) (0.024) (0.025)

T3 - Certain / Low 0.031*** 0.027*** 0.019
(0.006) (0.006) (0.013)

T4 - Uncertain / High 0.027* 0.033* 0.016 -0.023
(0.016) (0.019) (0.022) (0.042)

T5 - Certain / High 0.037*** 0.036*** 0.019 0.123***
(0.008) (0.009) (0.015) (0.041)

Cum. Extraction Gini 0.392***
(0.054)

Cum. RestorationP R Gini 0.093***
(0.018)

Constant 0.015*** 0.014*** 0.042*** 0.135*** 0.003
(0.004) (0.004) (0.011) (0.015) (0.003)

Observations 2867 750 750 510 510
R2-adj (overall) (0.081) 0.096 0.078 0.073 0.486

Notes. Gini: within-group Gini indicator. Column 1 reports GLS-RE Estimates: an observation is a
group in a round of a supergame; Columns 2-5 report OLS Estimates: an observation is a group in a
supergame. In each column, the dependent variable captures dispersion, measured through within-group
Gini indicators, in: (1) round payoffs; (2,5) cumulative payoffs; (3) cumulative extraction choices; (4)
cumulative payoff-relevant restoration choices. Restoration choices are payoff-relevant only if restoration
is needed because the extraction threshold is exceeded, and available – and otherwise valued as zero. The
baseline treatment in columns 1, 2 and 3 is T1 - Baseline. The baseline treatment in column 4 is T3
- Certain / Low. Results are based on cumulative Block 1 evidence, from supergames 4+ (experienced
subjects). Standard errors clustered at the session level.
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J Experimental Instructions
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Treatment T1: No Restoration
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Treatment T2: Uncertain & Low-Cost Restoration
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Treatment T3: Certain & Low-Cost Restoration

54



Treatment T4: Uncertain & High-Cost Restoration
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Treatment T5: Certain & High-Cost Restoration
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Treatment T1: No Restoration
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Treatments with Restoration (T2-T5)
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